

Solutions: Algebraic Expressions

1.

$$\begin{aligned} \frac{5x^2 - 3x + 7}{2} - \frac{2x^2 + x - 4}{4} &= \frac{2(5x^2 - 3x + 7) - (2x^2 + x - 4)}{4} \\ &= \frac{10x^2 - 6x + 14 - 2x^2 - x + 4}{4} = \frac{8x^2 - 7x + 18}{4} = 2x^2 - \frac{7x}{4} + \frac{9}{2} \end{aligned}$$

The simplified expression is $2x^2 - \frac{7x}{4} + \frac{9}{2}$.

2.

$$3M = 3(-a^2 + 2ab - b^2) = -3a^2 + 6ab - 3b^2$$

$$2N = 2(3a^2 - 4ab + 2b^2) = 6a^2 - 8ab + 4b^2$$

$$3M + 2N = (-3a^2 + 6ab - 3b^2) + (6a^2 - 8ab + 4b^2) = 3a^2 - 2ab + b^2$$

The value of $3M + 2N$ is $3a^2 - 2ab + b^2$.

3. The term $-3x^2yz$ is not a like term with $-7xy^2z$ because the exponents of x and y are different. The correct option is $-3x^2yz$.

4. A regular hexagon has 6 equal sides. Therefore, the length of one side is:

$$\frac{18p + 24}{6} = 3p + 4$$

The length of one side is $3p + 4$.

5.

$$0.25(8m - 12n + 16) = 2m - 3n + 4$$

$$0.5(6n - 4m + 2) = 3n - 2m + 1$$

$$(2m - 3n + 4) + (3n - 2m + 1) = m + 5$$

The simplified expression is $m + 5$.

6. Let the expression be E :

$$E + (5x^2 - 8xy + 3y^2) = -2x^2 + 4xy - y^2$$

$$E = (-2x^2 + 4xy - y^2) - (5x^2 - 8xy + 3y^2) = -7x^2 + 12xy - 4y^2$$

The expression is $-7x^2 + 12xy - 4y^2$.

7.

$$3a(b + c) = 3ab + 3ac$$

$$-2b(a - c) = -2ab + 2bc$$

$$c(a + b) = ac + bc$$

$$3ab + 3ac - 2ab + 2bc + ac + bc = ab + 4ac + 3bc$$

There are 3 terms in the simplified form.

8.

$$-4 + 5 = 1$$

The sum of the coefficients is $\boxed{1}$.

9.

$$-3y + 2y - 10$$

The algebraic expression is $\boxed{-3y + 2y - 10}$.

10.

$$\frac{2}{3}(9p - 6q) = 6p - 4q$$

$$\frac{3}{4}(8p + 4q) = 6p + 3q$$

$$(6p + 3q) - (6p - 4q) = 7q$$

The result is $\boxed{2p + 9q}$.

11. The numerical coefficients are 5, -2 , and $\frac{1}{2}$. The smallest coefficient is -2 . The term with the smallest numerical coefficient is $\boxed{\text{The term in } x^2}$.

12.

$$(7a + 5b) - (3a + 2b) = 4a + 3b$$

The expression for the remaining fruits is $\boxed{4a + 3b}$.

13.

$$3y - (4z - x) + 2y = 3y - 4z + x + 2y = x + 5y - 4z$$

$$2x - (x + 5y - 4z) = x - 5y + 4z$$

$$-\{x - 5y + 4z\} = -x + 5y - 4z$$

The simplified expression is $\boxed{-x + 5y - 4z}$.

14. The standard form is $7k^2 - 3k + 8$. The first term is $\boxed{7k^2}$.

15. The pair $4x - 3y$ and $3y - 4x$ has a sum of zero:

$$(4x - 3y) + (3y - 4x) = 0$$

The correct option is $\boxed{4x - 3y \text{ and } 3y - 4x}$.