

## Case Study 3

**Case Study Paragraph:** A company is manufacturing ice-cream cones with a hemispherical scoop on top. The cone has a height of 9 cm and a radius of 3.5 cm. Each ice-cream scoop is placed perfectly on top of the cone, forming a solid consisting of a cone and a hemisphere. The company wants to know the surface area of this combination for designing wrappers, and the volume of the ice-cream for production estimates. Additionally, they want to calculate the total ice-cream produced if 500 such cones are prepared in a day. Based on this scenario, answer the following questions.

### MCQ Questions

1. The volume of the cone is:

- (a)  $115.5 \text{ cm}^3$
- (b)  $115 \text{ cm}^3$
- (c)  $120 \text{ cm}^3$
- (d)  $110 \text{ cm}^3$

**Answer:** (a)  $115.5 \text{ cm}^3$

**Solution:** Volume of cone =  $\frac{1}{3}\pi r^2 h = \frac{1}{3} \times \frac{22}{7} \times (3.5)^2 \times 9 = 115.5 \text{ cm}^3$ .

2. The volume of the hemisphere is:

- (a)  $89.8 \text{ cm}^3$
- (b)  $90 \text{ cm}^3$
- (c)  $88 \text{ cm}^3$
- (d)  $92 \text{ cm}^3$

**Answer:** (a)  $89.8 \text{ cm}^3$

**Solution:** Volume of hemisphere =  $\frac{2}{3}\pi r^3 = \frac{2}{3} \times \frac{22}{7} \times (3.5)^3 = 89.8 \text{ cm}^3$ .

3. The total volume of ice-cream in one cone with scoop is:

- (a)  $200 \text{ cm}^3$
- (b)  $205.3 \text{ cm}^3$
- (c)  $210 \text{ cm}^3$
- (d)  $215 \text{ cm}^3$

**Answer:** (b)  $205.3 \text{ cm}^3$

**Solution:** Total volume =  $115.5 + 89.8 = 205.3 \text{ cm}^3$ .

4. The total ice-cream produced in 500 cones is:

- (a)  $102,650 \text{ cm}^3$
- (b)  $100,000 \text{ cm}^3$
- (c)  $101,000 \text{ cm}^3$
- (d)  $105,000 \text{ cm}^3$

**Answer:** (a)  $102,650 \text{ cm}^3$

**Solution:**  $205.3 \times 500 = 102,650 \text{ cm}^3$ .

5. The curved surface area of cone plus curved surface of hemisphere is:

- (a)  $225 \text{ cm}^2$
- (b)  $214.5 \text{ cm}^2$
- (c)  $220 \text{ cm}^2$
- (d)  $230 \text{ cm}^2$

**Answer:** (b)  $214.5 \text{ cm}^2$

**Solution:** CSA of cone =  $\pi r l$ , with  $l = \sqrt{r^2 + h^2} = \sqrt{(3.5)^2 + 9^2} = 9.66 \text{ cm}$ . CSA of cone =  $\pi \times 3.5 \times 9.66 = 106.2 \text{ cm}^2$ . CSA of hemisphere =  $2\pi r^2 = 2 \times \frac{22}{7} \times (3.5)^2 = 77 \text{ cm}^2$ . Total =  $183.2 \text{ cm}^2$ . None of the given options match exactly. Suggested correction: Option should be around  $183 \text{ cm}^2$ .