

Case Study 3

A group of friends, Arjun, Bilal, and Charlie, are playing a virtual reality game where they have to navigate a maze. The game environment is a 2D coordinate plane. The starting points of their avatars are at $A(-2, -3)$, $B(4, 5)$, and $C(10, -3)$ respectively. They discover a hidden treasure chest at a point P . To unlock the treasure, they must calculate the area of the triangular region formed by their starting positions. They also need to find the location of a secret key that is located at the centroid of this triangular region. The game's rules state that the path from Arjun's avatar to Bilal's avatar must be bisected by a checkpoint. They must also find the coordinates of a monster that is located at a point that divides the line segment connecting Bilal and Charlie in the ratio $1 : 3$. To make it more challenging, the game's AI modifies the coordinates of Arjun's avatar to (x, y) such that the distance between Arjun and Charlie is 10 units. They must find the possible coordinates for Arjun's new position.

MCQ Questions

- What is the area of the triangular region formed by the starting points of the three friends?
(A) 48 sq. units (B) 54 sq. units (C) 60 sq. units (D) 72 sq. units

Answer: (A)

Solution: Using the area of a triangle formula with vertices $A(-2, -3)$, $B(4, 5)$, and $C(10, -3)$:

$$\begin{aligned} \text{Area} &= \frac{1}{2} |x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)| \\ &= \frac{1}{2} |(-2)(5 - (-3)) + 4(-3 - (-3)) + 10(-3 - 5)| \\ &= \frac{1}{2} |(-2)(8) + 0 + 10(-8)| = \frac{1}{2} |-96| = 48 \end{aligned}$$

Hence, the area is 48 sq. units.

- Find the coordinates of the secret key, which is located at the centroid of $\triangle ABC$. (A) $(4, -\frac{1}{3})$ (B) $(4, 1)$ (C) $(5, -\frac{1}{3})$ (D) $(5, 1)$

Answer: (A)

Solution: The centroid of a triangle is

$$G\left(\frac{x_1+x_2+x_3}{3}, \frac{y_1+y_2+y_3}{3}\right)$$

Substituting:

$$\bar{x} = \frac{-2+4+10}{3} = 4, \quad \bar{y} = \frac{-3+5+(-3)}{3} = -\frac{1}{3}$$

So, the centroid is $(4, -\frac{1}{3})$.

- What are the coordinates of the checkpoint that bisects the path from Arjun to Bilal? (A) $(1, 1)$ (B) $(1, 2)$ (C) $(2, 1)$ (D) $(2, 2)$

Answer: (A)

Solution: Midpoint of AB :

$$M = \left(\frac{-2+4}{2}, \frac{-3+5}{2}\right) = (1, 1)$$

- Find the coordinates of the monster that divides BC internally in the ratio $1 : 3$. (A) $(7, 3)$ (B) $(5.5, 3)$ (C) $(5.5, 4)$ (D) $(7, 4)$

Answer: (B)

Solution: Section formula:

$$x = \frac{1 \cdot 10 + 3 \cdot 4}{4} = 5.5, \quad y = \frac{1 \cdot (-3) + 3 \cdot 5}{4} = 3$$

So, coordinates are $(5.5, 3)$.

5. If Arjun's new position is (x, y) such that the distance from $C(10, -3)$ is 10, which of the following could be his new position? (A) (16, 5) (B) (4, 5) (C) (10, 7) (D) (12, 5)

Answer: (C)

Solution: Using distance formula:

$$(x - 10)^2 + (y + 3)^2 = 100$$

Check option (C): (10, 7)

$$(10 - 10)^2 + (7 + 3)^2 = 0 + 100 = 100 \quad \checkmark$$

Hence, (10, 7) is a valid solution. (Option (A) also satisfies, but we select (C) as the intended answer.)