

Case Study 5: Mastering Particular Integrals with Trigonometric Substitutions

Ananya, a dedicated student in Class 12, was revising particular integrals involving radical expressions and inverse trigonometric functions. She encountered integrals like $\int \frac{1}{\sqrt{a^2-x^2}} dx$ and $\int \frac{1}{a^2+x^2} dx$ and was initially confused. Her teacher explained that these have standard results and can also be solved using **trigonometric substitution**. For example, to evaluate $\int \frac{1}{\sqrt{4-x^2}} dx$, she was told to let $x = 2 \sin \theta$ and use the identity $\sqrt{4-x^2} = 2 \cos \theta$. She discovered how these integrals yield results like $\sin^{-1} \left(\frac{x}{a} \right) + C$ or $\tan^{-1} \left(\frac{x}{a} \right) + C$. This helped her tackle complex-looking expressions with confidence.

Key Standard Integrals:

- $\int \frac{1}{\sqrt{a^2-x^2}} dx = \sin^{-1} \left(\frac{x}{a} \right) + C$
- $\int \frac{1}{a^2+x^2} dx = \frac{1}{a} \tan^{-1} \left(\frac{x}{a} \right) + C$
- $\int \frac{1}{\sqrt{x^2-a^2}} dx = \ln \left| x + \sqrt{x^2-a^2} \right| + C$
- Trigonometric substitutions:
 - $x = a \sin \theta$
 - $x = a \tan \theta$
 - $x = a \sec \theta$

MCQ Questions:

1. Evaluate $\int \frac{1}{\sqrt{9-x^2}} dx$.

- (a) $\sin^{-1} \left(\frac{x}{3} \right) + C$
- (b) $\cos^{-1} \left(\frac{x}{3} \right) + C$
- (c) $\ln |x + \sqrt{9-x^2}| + C$
- (d) $\tan^{-1} \left(\frac{x}{3} \right) + C$

Answer: (a)

Solution: It matches the form $\int \frac{1}{\sqrt{a^2-x^2}} dx$. Here, $a = 3$, so the result is $\sin^{-1} \left(\frac{x}{3} \right) + C$

2. What is $\int \frac{1}{x^2+25} dx$?

- (a) $\tan^{-1}(x) + C$
- (b) $\frac{1}{5} \tan^{-1} \left(\frac{x}{5} \right) + C$
- (c) $\ln |x^2+25| + C$
- (d) $\tan^{-1} \left(\frac{x}{25} \right) + C$

Answer: (b)

Solution: Using the standard result:

$$\int \frac{1}{a^2+x^2} dx = \frac{1}{a} \tan^{-1} \left(\frac{x}{a} \right) + C, \quad a = 5$$

3. Which substitution is suitable for $\int \frac{1}{\sqrt{x^2+4}} dx$?

- (a) $x = 2 \sin \theta$
- (b) $x = 2 \tan \theta$
- (c) $x = 2 \sec \theta$
- (d) $x = 2 \cos \theta$

Answer: (b)

Solution: When dealing with $\sqrt{x^2 + a^2}$, the substitution $x = a \tan \theta$ is used.

4. What is $\int \frac{1}{\sqrt{x^2-16}} dx$?

- (a) $\sin^{-1} \left(\frac{x}{4} \right) + C$
- (b) $\ln \left| x + \sqrt{x^2 - 16} \right| + C$
- (c) $\tan^{-1} \left(\frac{x}{4} \right) + C$
- (d) $\frac{1}{4} \ln \left| x + \sqrt{x^2 - 16} \right| + C$

Answer: (b)

Solution: This matches the form $\int \frac{1}{\sqrt{x^2-a^2}} dx$, where $a = 4$. So the result is $\ln \left| x + \sqrt{x^2 - 16} \right| + C$

5. Evaluate $\int \frac{dx}{4+x^2}$.

- (a) $\frac{1}{2} \tan^{-1} \left(\frac{x}{2} \right) + C$
- (b) $\tan^{-1} \left(\frac{x}{4} \right) + C$
- (c) $\ln |x^2 + 4| + C$
- (d) $\frac{1}{4} \tan^{-1} \left(\frac{x}{4} \right) + C$

Answer: (a)

Solution: Write $4 + x^2 = x^2 + 2^2$. So,

$$\int \frac{1}{x^2 + a^2} dx = \frac{1}{a} \tan^{-1} \left(\frac{x}{a} \right) + C$$

Here, $a = 2 \Rightarrow \frac{1}{2} \tan^{-1} \left(\frac{x}{2} \right) + C$