

Case Study 2: Aircraft Navigation System

An aircraft navigation system is being designed to ensure safe flight paths over a mountainous region. A radar station is located at point $P(1, 2, 3)$, and a signal beacon is at $Q(4, 6, 7)$. The aircraft's flight path is along a line passing through P with direction ratios $(1, -2, 2)$. A restricted airspace plane is defined by $3x - y + 2z = 5$. Engineers need to determine the direction cosines of the flight path, the equation of the path, the angle between the path and the line PQ , the distance of the beacon from the plane, and conditions for coplanarity with another flight path to avoid collisions.

Key Formulas and Properties

- Direction Cosines:** For a vector $a\hat{i} + b\hat{j} + c\hat{k}$, direction cosines are $\frac{a}{\sqrt{a^2+b^2+c^2}}$, $\frac{b}{\sqrt{a^2+b^2+c^2}}$, $\frac{c}{\sqrt{a^2+b^2+c^2}}$, and $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$.
- Equation of a Line:** Vector form: $\vec{r} = \vec{a} + \lambda\vec{b}$; Cartesian form: $\frac{x-x_1}{a} = \frac{y-y_1}{b} = \frac{z-z_1}{c}$.
- Angle between Two Lines:** For direction vectors (a_1, b_1, c_1) and (a_2, b_2, c_2) , $\cos \theta = \frac{a_1a_2 + b_1b_2 + c_1c_2}{\sqrt{a_1^2 + b_1^2 + c_1^2} \cdot \sqrt{a_2^2 + b_2^2 + c_2^2}}$.
- Distance from a Point to a Plane:** For point (x_1, y_1, z_1) and plane $ax + by + cz + d = 0$, distance = $\left| \frac{ax_1 + by_1 + cz_1 + d}{\sqrt{a^2 + b^2 + c^2}} \right|$.
- Coplanarity Condition:** Two lines with direction vectors \vec{b}_1, \vec{b}_2 and a vector joining points on them $\vec{a}_2 - \vec{a}_1$ are coplanar if $[\vec{a}_2 - \vec{a}_1, \vec{b}_1, \vec{b}_2] = 0$.

MCQ Questions

- What are the direction cosines of the flight path with direction ratios $(1, -2, 2)$?

- a) $\left(\frac{1}{3}, -\frac{2}{3}, \frac{2}{3}\right)$
- b) $\left(\frac{1}{\sqrt{9}}, -\frac{2}{\sqrt{9}}, \frac{2}{\sqrt{9}}\right)$
- c) $\left(\frac{1}{\sqrt{3}}, -\frac{2}{\sqrt{3}}, \frac{2}{\sqrt{3}}\right)$
- d) $\left(\frac{1}{3}, -\frac{1}{3}, \frac{2}{3}\right)$

Answer: a) $\left(\frac{1}{3}, -\frac{2}{3}, \frac{2}{3}\right)$

Solution: The magnitude of the vector $(1, -2, 2)$ is $\sqrt{1^2 + (-2)^2 + 2^2} = \sqrt{1 + 4 + 4} = \sqrt{9} = 3$. Direction cosines are $\frac{1}{3}, -\frac{2}{3}, \frac{2}{3}$. Verify: $\left(\frac{1}{3}\right)^2 + \left(-\frac{2}{3}\right)^2 + \left(\frac{2}{3}\right)^2 = \frac{1}{9} + \frac{4}{9} + \frac{4}{9} = 1$. Option a is correct.

- What is the Cartesian equation of the flight path passing through $P(1, 2, 3)$ with direction ratios $(1, -2, 2)$?

- a) $\frac{x-1}{1} = \frac{y-2}{-2} = \frac{z-3}{2}$
- b) $\frac{x-1}{2} = \frac{y-2}{-2} = \frac{z-3}{1}$
- c) $\frac{x-2}{1} = \frac{y-1}{-2} = \frac{z-3}{2}$
- d) $\frac{x-1}{1} = \frac{y-2}{2} = \frac{z-3}{-2}$

Answer: a) $\frac{x-1}{1} = \frac{y-2}{-2} = \frac{z-3}{2}$

Solution: The line passes through $(1, 2, 3)$ with direction ratios $(1, -2, 2)$. The Cartesian equation is $\frac{x-1}{1} = \frac{y-2}{-2} = \frac{z-3}{2}$. Option a matches this equation.

3. What is the distance from the beacon at $Q(4, 6, 7)$ to the plane $3x - y + 2z = 5$?

- a) $\frac{15}{\sqrt{14}}$
- b) $\frac{21}{\sqrt{14}}$
- c) $\frac{15}{\sqrt{13}}$
- d) $\frac{21}{\sqrt{13}}$

Answer: a) $\frac{15}{\sqrt{14}}$

Solution: For plane $3x - y + 2z - 5 = 0$, distance from $(4, 6, 7)$ is $\left| \frac{3 \cdot 4 + (-1) \cdot 6 + 2 \cdot 7 - 5}{\sqrt{3^2 + (-1)^2 + 2^2}} \right| = \left| \frac{12 - 6 + 14 - 5}{\sqrt{9 + 1 + 4}} \right| = \left| \frac{15}{\sqrt{14}} \right| = \frac{15}{\sqrt{14}}$. Option a is correct.

4. What is the angle between the flight path and the line joining $P(1, 2, 3)$ to $Q(4, 6, 7)$?

- a) $\cos^{-1} \left(\frac{3}{\sqrt{9 \cdot \sqrt{41}}} \right)$
- b) $\cos^{-1} \left(\frac{9}{\sqrt{9 \cdot \sqrt{41}}} \right)$
- c) $\cos^{-1} \left(\frac{3}{\sqrt{41 \cdot \sqrt{9}}} \right)$
- d) $\cos^{-1} \left(\frac{9}{\sqrt{41 \cdot \sqrt{9}}} \right)$

Answer: b) $\cos^{-1} \left(\frac{9}{\sqrt{9 \cdot \sqrt{41}}} \right)$

Solution: Direction vector of line PQ : $(4 - 1, 6 - 2, 7 - 3) = (3, 4, 4)$. Flight path direction vector: $(1, -2, 2)$. Cosine of angle: $\cos \theta = \frac{1 \cdot 3 + (-2) \cdot 4 + 2 \cdot 4}{\sqrt{1^2 + (-2)^2 + 2^2} \cdot \sqrt{3^2 + 4^2 + 4^2}} = \frac{3 - 8 + 8}{\sqrt{9 \cdot \sqrt{41}}} = \frac{3}{3 \cdot \sqrt{41}} = \frac{1}{\sqrt{41}}$. This matches option b: $\frac{3}{\sqrt{9 \cdot \sqrt{41}}} = \frac{1}{\sqrt{41}}$.

5. What is the condition for the flight path to be coplanar with another line passing through $Q(4, 6, 7)$ with direction ratios $(2, 1, -1)$?

- a) $\begin{vmatrix} 3 & 4 & 4 \\ 1 & -2 & 2 \\ 2 & 1 & -1 \end{vmatrix} = 0$
- b) $\begin{vmatrix} 1 & -2 & 2 \\ 3 & 4 & 4 \\ 2 & 1 & -1 \end{vmatrix} = 0$
- c) $\begin{vmatrix} 4 & 6 & 7 \\ 1 & -2 & 2 \\ 2 & 1 & -1 \end{vmatrix} = 0$
- d) $\begin{vmatrix} 1 & 2 & 3 \\ 4 & 6 & 7 \\ 2 & 1 & -1 \end{vmatrix} = 0$

Answer: a) $\begin{vmatrix} 3 & 4 & 4 \\ 1 & -2 & 2 \\ 2 & 1 & -1 \end{vmatrix} = 0$

Solution: For coplanarity, the scalar triple product of vectors $\vec{QP} = (3, 4, 4)$, direction vector $(1, -2, 2)$, and direction vector $(2, 1, -1)$ must be zero. The determinant

is $\begin{vmatrix} 3 & 4 & 4 \\ 1 & -2 & 2 \\ 2 & 1 & -1 \end{vmatrix} = 3((-2) \cdot (-1) - 2 \cdot 1) - 4(1 \cdot (-1) - 2 \cdot 2) + 4(1 \cdot 1 - (-2) \cdot 2) =$

$3(2 - 2) - 4(-1 - 4) + 4(1 + 4) = 0 + 20 + 20 = 40 \neq 0$. Option a is the correct form, though the lines are not coplanar.

www.udgamwelfarefoundation.com