

Case Study 4

In three-dimensional geometry, a line can be defined in vector or Cartesian form. The vector form of the equation of a line passing through a point with position vector \vec{a} and parallel to vector \vec{b} is given by:

$$\vec{r} = \vec{a} + \lambda \vec{b}$$

where λ is a scalar parameter. In Cartesian form, if a line passes through (x_1, y_1, z_1) and is parallel to direction ratios (a, b, c) , its equation is:

$$\frac{x - x_1}{a} = \frac{y - y_1}{b} = \frac{z - z_1}{c}$$

These forms allow us to determine points on the line, check if a point lies on the line, and find the angle between two lines. Additionally, if a line passes through two known points A and B , its direction vector is $\vec{B} - \vec{A}$. This concept finds applications in geometry, physics, and engineering when dealing with lines in 3D structures.

MCQ Questions:

1. What is the vector equation of the line passing through point $A(1, 2, 3)$ and parallel to the vector $\vec{b} = 4\hat{i} + 5\hat{j} + 6\hat{k}$?

- (a) $\vec{r} = \hat{i} + 2\hat{j} + 3\hat{k} + \lambda(4\hat{i} + 5\hat{j} + 6\hat{k})$
- (b) $\vec{r} = 4\hat{i} + 5\hat{j} + 6\hat{k} + \lambda(\hat{i} + 2\hat{j} + 3\hat{k})$
- (c) $\vec{r} = \lambda(4\hat{i} + 5\hat{j} + 6\hat{k})$
- (d) $\vec{r} = \hat{i} + 2\hat{j} + 3\hat{k}$

Answer: (a)

Solution: The vector equation is of the form $\vec{r} = \vec{a} + \lambda \vec{b}$ where $\vec{a} = \hat{i} + 2\hat{j} + 3\hat{k}$.

2. Find the Cartesian equation of the line passing through $(1, -2, 3)$ and parallel to vector $\vec{b} = 2\hat{i} + 3\hat{j} + \hat{k}$.

- (a) $\frac{x+1}{2} = \frac{y-2}{3} = \frac{z-3}{1}$
- (b) $\frac{x-1}{2} = \frac{y+2}{3} = \frac{z-3}{1}$
- (c) $\frac{x-1}{2} = \frac{y+2}{3} = \frac{z+3}{1}$
- (d) $\frac{x+1}{2} = \frac{y+2}{3} = \frac{z+3}{1}$

Answer: (b)

Solution: Direction ratios = $(2, 3, 1)$. Cartesian equation:

$$\frac{x - 1}{2} = \frac{y + 2}{3} = \frac{z - 3}{1}$$

3. What is the angle θ between two lines with direction vectors $\vec{a} = 2\hat{i} + 3\hat{j} + 6\hat{k}$ and $\vec{b} = \hat{i} - \hat{j} + 2\hat{k}$?

- (a) $\cos \theta = \frac{7}{\sqrt{49.6}}$

(b) $\cos \theta = \frac{4}{\sqrt{49 \cdot 6}}$
 (c) $\cos \theta = \frac{13}{\sqrt{49 \cdot 6}}$
 (d) $\cos \theta = \frac{14}{\sqrt{49 \cdot 6}}$

Answer: (d)

Solution: Use dot product:

$$\vec{a} \cdot \vec{b} = 2(1) + 3(-1) + 6(2) = 2 - 3 + 12 = 11$$

$$|\vec{a}| = \sqrt{4 + 9 + 36} = \sqrt{49} = 7, \quad |\vec{b}| = \sqrt{1 + 1 + 4} = \sqrt{6}$$

$$\cos \theta = \frac{11}{7\sqrt{6}} \Rightarrow \text{Correct answer not in options.}$$

Correction: Replace last option with $\cos \theta = \frac{11}{7\sqrt{6}}$.

4. Find the vector equation of the line joining the points $A(2, 1, 3)$ and $B(4, 5, 6)$.

(a) $\vec{r} = (2\hat{i} + \hat{j} + 3\hat{k}) + \lambda(2\hat{i} + 4\hat{j} + 3\hat{k})$
 (b) $\vec{r} = (2\hat{i} + \hat{j} + 3\hat{k}) + \lambda(\hat{i} + 2\hat{j} + \hat{k})$
 (c) $\vec{r} = (4\hat{i} + 5\hat{j} + 6\hat{k}) + \lambda(2\hat{i} + \hat{j} + 3\hat{k})$
 (d) $\vec{r} = (2\hat{i} + \hat{j} + 3\hat{k}) + \lambda(3\hat{i} + 3\hat{j} + 3\hat{k})$

Answer: (b)

Solution: Direction vector from A to B :

$$(4 - 2, 5 - 1, 6 - 3) = (2, 4, 3) \Rightarrow \vec{r} = (2\hat{i} + \hat{j} + 3\hat{k}) + \lambda(2\hat{i} + 4\hat{j} + 3\hat{k})$$

Correction: Correct option is not listed. Option (a) is closest. Final answer: (a)

5. What is the shortest distance between the skew lines:

$$\text{Line 1: } \frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$$

$$\text{Line 2: } \frac{x-2}{1} = \frac{y+1}{2} = \frac{z-1}{3}$$

(a) $\frac{14}{\sqrt{29}}$
 (b) $\frac{13}{\sqrt{30}}$
 (c) $\frac{2}{\sqrt{35}}$
 (d) $\frac{1}{\sqrt{35}}$

Answer: (c)

Solution:

$$\text{Let } \vec{a}_1 = \langle 1, 2, 3 \rangle, \vec{d}_1 = \langle 2, 3, 4 \rangle, \\ \vec{a}_2 = \langle 2, -1, 1 \rangle, \vec{d}_2 = \langle 1, 2, 3 \rangle$$

Shortest distance:

$$\vec{n} = \vec{d}_1 \times \vec{d}_2 = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & 4 \\ 1 & 2 & 3 \end{vmatrix} = \hat{i}(3 \cdot 3 - 4 \cdot 2) - \hat{j}(2 \cdot 3 - 4 \cdot 1) + \hat{k}(2 \cdot 2 - 3 \cdot 1) = \hat{i}(9 - 8) - \hat{j}(6 - 4) + \hat{k}(4 - 3) = \langle 1, -2, 1 \rangle$$

Vector between points: $\vec{a}_2 - \vec{a}_1 = \langle 1, -3, -2 \rangle$

$$\text{Distance} = \frac{|\vec{n} \cdot (\vec{a}_2 - \vec{a}_1)|}{|\vec{n}|} = \frac{|(1)(1) + (-2)(-3) + (1)(-2)|}{\sqrt{1^2 + (-2)^2 + 1^2}} = \frac{|1 + 6 - 2|}{\sqrt{6}} = \frac{5}{\sqrt{6}} \Rightarrow \text{Not listed}$$

Correction: Correct distance is $\frac{5}{\sqrt{6}}$. Options need to be corrected.