Sequence and Series – Set 3

Instructions for Solving the DPP (Daily Practice Problems)

1. Purpose of the DPP

- This DPP is designed to strengthen concept clarity for both **JEE Main** and **JEE Advanced**.
- Problems are arranged in increasing order of difficulty:
 - Level-1: JEE Main oriented
 - Level-2: Mixed Main + Advanced
 - Level-3: JEE Advanced oriented

2. How to Attempt the DPP

- 1. Read the theory from your notes before attempting the problems.
- 2. Do not jump between questions; solve sequentially unless instructed otherwise.
- 3. For each question, write:
 - Key concept involved
 - Formula used
 - Corrected approach if you made an error
- 4. Maintain a separate **DPP Mistake Notebook**.

3. Recommended Time Allocation

- Total time per DPP: 45-60 minutes
- Follow the recommended per-question time:
 - Single Correct / Objective: 1-2 minutes
 - Numerical Value: **2–3 minutes**
 - Integer Type: **3–4 minutes**
 - Advanced Multi-Correct: 4-6 minutes
 - Paragraph (Advanced): 6-8 minutes
- Mark questions exceeding time limit with a star (*) and revisit after finishing the DPP.

4. Best Practices for Scoring Higher

- Focus on accuracy first, then speed.
- Review every calculation step—most mistakes arise from small algebraic slips.
- Solve advanced problems only after finishing Main-level questions for the chapter.
- Revise solved DPPs weekly and note repeating mistake patterns.
- Use short notes for formulas, special results, and commonly used approximations.
- After solving, compare your approach with the official solution or teacher's method.
- Build endurance by solving at least one DPP in exam-like conditions daily.

5. Evaluation Guidelines

- Award yourself:
 - +4 / -1 for JEE Main pattern questions.
 - Partial marking for JEE Advanced style multi-correct.
- Maintain a cumulative score record for every DPP set.
- Track:
 - Chapters with highest accuracy
 - Chapters needing revision
 - Time taken per DPP
 - Common error types

6. Weekly Review Checklist

- Reattempt the unsolved or incorrect problems from the past 5–7 DPPs.
- Update your formula sheet and mistake notebook.
- Solve at least one mixed-topic DPP to test retention.

By: www.udgamwelfarefoundation.com (helping students since 2012)

Daily Practice Problems

Multiple Choice Questions

- 1. If a, b, c, d are positive real numbers such that a + b + c + d = 2, then m = (a + b)(c + d) satisfies:
 - (a) 0 < m < 1
 - (b) 0 < m < 2
 - (c) $m \ge 1$
 - (d) none of these
- 2. Suppose a, b, c are in A.P. and a^2, b^2, c^2 in G.P. If a > b > c and $a + b + c = \frac{3}{2}$, then a equals:
 - (a) $\frac{1}{2} + \frac{1}{\sqrt{2}}$
 - (b) $\frac{3}{4}$ (c) $\frac{5}{4}$

 - (d) none of these
- 3. If a, b, c, d are distinct integers in A.P. and $d = a^2 + b^2 + c^2$, then a + b + c + d equals:
 - (a) 2
 - (b) 4
 - (c) 6
 - (d) 8
- 4. If $\sum_{i=1}^{21} a_i = 693$, where a_1, a_2, \dots, a_{21} are in A.P., then $\sum_{r=0}^{10} a_{2r+1}$ equals:
 - (a) 363
 - (b) 396
 - (c) 420
 - (d) none of these
- 5. The sum of the infinite series

$$\frac{5}{3^2 \cdot 7^2} + \frac{9}{7^2 \cdot 11^2} + \frac{13}{11^2 \cdot 15^2} + \cdots$$

is:

- (b) $\frac{1}{36}$
- (d) none of these
- 6. Let a, b, c be positive real numbers such that

$$bx^{2} + \sqrt{(a+c)^{2} + 4b^{2}} x + (a+c) \ge 0, \ \forall x \in \mathbb{R}$$

Then a, b, c are in:

- (a) G.P.
- (b) A.P.
- (c) H.P.
- (d) none of these
- 7. If $\sum n, \frac{\sqrt{10}}{3} \sum n^2, \sum n^3$ are in G.P., then n equals:
 - (a) 4
 - (b) 5
 - (c) 6
 - (d) none of these

Integer Type Questions

8. If
$$\sum_{r=1}^{n} t_r = \frac{n(n+1)(n+2)(n+3)}{8}$$
, then

$$\lim_{n \to \infty} \sum_{r=1}^{n} \frac{1}{t_r}$$

9. If $a_7 = 9$ in an A.P. and $a_1 a_2 a_7$ is least, then the common difference is:

Multiple Choice Questions (continued)

- 10. If x, y, z > 0 and x + y + z = 1, then $\frac{xyz}{(1-x)(1-y)(1-z)}$ is necessarily:
 - (a) ≥ 8
 - (b) $\leq \frac{1}{8}$
 - (c) $<\frac{1}{8}$
 - (d) none of these
- 11. If a, b, c are positive real numbers in H.P., then $\frac{1}{b-a} + \frac{1}{b-c}$ equals:
 - (a) $\frac{2}{b}$
 - (b) 2b
 - (c) $5b^2 1$
 - (d) 4b + 1
- 12. If A_1 is the A.M. and G_1, G_2 are two G.M.s between a and b, then $\frac{G_1^2 + G_2^2}{G_1 G_2 A_1}$ equals:
 - (a) 2
 - (b) 4
 - (c) 5
 - (d) 10
- 13. $\{a_i\} = 1, 2, \dots, n$ is an A.P. If $a_7 = 9$, the value of the common difference such that $a_1 a_2 a_7$ is minimum:
 - (a) $\frac{331}{10}$
 - (b) $\frac{133}{20}$
 - (c) $\frac{30}{17}$
 - (d) $\frac{33}{20}$
- 14. The third term of a geometric progression is 4. The product of the first five terms is:
 - (a) 4^3
 - (b) 4^5
 - (c) 4^4
 - (d) none of these
- 15. If a, b, c are in G.P., then the equations $ax^2 + 2bx + c = 0$ and $dx^2 + 2ex + f = 0$ have a common root if $\frac{d}{a}, \frac{e}{b}, \frac{f}{c}$ are in:
 - (a) A.P.
 - (b) G.P.
 - (c) H.P.

- (d) none of these
- 16. If x > 1, y > 1, z > 1 are in G.P., then $\frac{1}{1 + \ln x}, \frac{1}{1 + \ln y}, \frac{1}{1 + \ln z}$ are in:
 - (a) A.P.
 - (b) H.P.
 - (c) G.P.
 - (d) none of these
- 17. The harmonic mean of roots of $(5 + \sqrt{2})x^2 (4 + \sqrt{5})x + 8 + 2\sqrt{5} = 0$ is:
 - (a) 2
 - (b) 4
 - (c) 6
 - (d) 8
- 18. Let a_1, a_2, \ldots, a_{10} be in A.P. and h_1, h_2, \ldots, h_{10} be in H.P. If $a_1 = h_1 = 2$ and $a_{10} = h_{10} = 3$, then a_4h_7 equals:
 - (a) 2
 - (b) 3
 - (c) 5
 - (d) 6