- 1. Multiple Correct Choice: If the equation $ax^2 + 2bx + c = 0$ and $x^2 + 2r^2x + 1 = 0$ we have one common root and a,b,c are in A.P $(r^2 \neq 1)$, then the roots of the equation $x^2 + 2r^2x + 1 = 0$ are
 - (a) $\frac{-a}{c}$
 - (b) $\frac{-c}{a}$
 - (c) $\frac{b}{a}$
 - (d) $\frac{a}{b}$
- 2. Multiple Correct Choice: If $x^2 2x + \sin^{\theta} = 0$, then x may lie in the set
 - -1,1
 - 0,2
 - -2,2
 - 1,2
- 3. Multiple Correct Choice: If β is one root of the equation $4y^2 + 2y 1 = 0$, then the other root is
 - (a) $\frac{1}{2} \beta$
 - (b) $\frac{-1}{2} \beta$
 - (c) $4\beta^3 + 3\beta$
 - (d) $4\beta^3 3\beta$
- 4. Multiple Correct Choice: Let a,b be two distinct roots of $x^4 + x^3 1 = 0$ and p(x) $= x^6 + x^4 + x^3 x^2 1$
 - (a) ab is a root of p(x) = 0
 - (b) a+b is a root of p(x) = 0
 - (c) both a+b and ab are roots of p(x) = 0
 - (d) none of ab, a+b is a root of p(x) = 0
- 5. Multiple Correct Choice: Let a,b,c be the sides of an obtuse angled triangle with $\angle C > \frac{\pi}{2}$. The equation $a^2x^2 + (b^2 + a^2 c^2)x + b^2 = 0$ has
 - (a) two positive roots
 - (b) one positive and one negative root
 - (c) two real roots
 - (d) two imaginary roots.
- 6. Multiple Correct Choice: Let β be repeated root of p(x) $x^3 + 3ax^2 + 3bx + c = 0$ then

- (a) β is a root of $x^2 + 2ax + b = 0$
- (b) $\beta = \frac{c ab}{2(a^2 b)}$
- (c) $\beta = \frac{ab-c}{a^2-b}$
- (d) β is a root of $ax^2 + 2bx + c = 0$
- 7. **Multiple Correct Choice:** If n is an even number and α, β are the roots of equation $x^2 + px + q = 0$ and also of equation $x^{2n} + p^n x^n + q^n = 0$ and $f(x) = \frac{(1+x)^n}{1+x^n}$, then $f(\frac{\alpha}{\beta}) = (\text{ where } \alpha^n + \beta^n \neq 0, p \neq 0)$
 - (a) 0
 - (b) 1
 - (c) -1
 - (d) none of these
- 8. Comprehension Type: Suppose two quadratic equations $p_1x^2 + q_1x + r_1 = 0$ and $p_2x^2 + q_2x + r_2 = 0$ have a common root β , then $p_1\beta^2 + q_1\beta + r_1 = 0$(a) and $p_2\beta^2 + q_2\beta + r_2 = 0$(b) Eliminating β using cross multiplication method gives us the condition for a common root. Solving two equations simultaneously, the common root can be obtained. Now consider three quadratic equations, $x^2 2ab_mx + t = 0$; m = 1, 2, 3 Given that each pair has exactly one root common.
 - (a) The common root between the equations obtained by m =1 and m=3 is

i.
$$-\sqrt{\frac{3}{2}}$$
 or $\sqrt{\frac{3}{2}}$

ii.
$$-\sqrt{\frac{2}{3}}$$
 or $\sqrt{\frac{2}{3}}$

iii.
$$-\sqrt{6}$$
 or $\sqrt{6}$

(b) The sum of all the three roots is equal to

i.
$$0or\sqrt{6}$$

ii.
$$\frac{11}{\sqrt{6}}$$
 or $-\frac{11}{\sqrt{6}}$

iii.
$$\frac{11}{\sqrt{6}}$$
 or $-\sqrt{11}$

iv. 0 or
$$\pm \frac{11}{\sqrt{6}}$$

- (c) The number of the triplets (b_1, b_2, b_3) for which such equations exist is
 - i. 2
 - ii. 3
 - iii. C_2^6
 - iv. infinite
- 9. Subjective: Find the value of $x \log_{2x+3}(6x^2 + 23x + 21) + \log_{3x+7}(4x^2 + 12x + 9) = 4$

2

- 10. Subjective: Solve the equation $x^4 + 4x^3 + 6x^2 + 4x + 5 = 0$ Given that its one root is i.
- 11. **Subjective:** Find the condition that the roots of the equation $x^3 px^2 + qx r = 0$ may be in AP hence solve the equation $x^3 12x^2 + 39x 28 = 0$
- 12. **Subjective:** Show that the following equation can have at most one real root. $3x^5 5x^3 + 21x + 3sinx + 4cosx + 5 = 0$
- 13. **Subjective:** Let a,b,c be positive integers. Consider the class of quadratic equations $ax^2 bx + c = 0$ having two distinct real roots in the open interval (0,1). Find the least positive integral value of a for such equation.
- 14. **Subjective:** Find the set of all real a such that $5a^2 3a 2$, $a^2 + a 2$, $2a^2 + a 1$ are the lengths of sides of triangle.
- 15. Subjective: If $x \in R$ prove that the maximum value of $2(a-x)(x+\sqrt{x^2+b^2})$ is a^2+b^2
- 16. **Subjective:** For what values of the parameter a, the equation $x^4 + 2ax^3 + x^2 + 2ax + 1 = 0$ has at least two distinct negative roots.