
SOLUTIONS FOR SET 5

1. Question: If the equation ax2 + 2bx + c = 0 and x2 + 2r2x + 1 = 0 have one common root and a, b, c are in A.P
(r2 ̸= 1), then the roots of the equation x2 + 2r2x + 1 = 0 are
Solution:

(i) Since a, b, c are in A.P., we have 2b = a + c.
(ii) Let f(x) = ax2 + 2bx + c and g(x) = x2 + 2r2x + 1.
(iii) If f(x) = 0 has a common root α with g(x) = 0, then α satisfies both equations:

aα2 + 2bα + c = 0 (1)

α2 + 2r2α + 1 = 0 (2)

(iv) Substitute 2b = a + c into (1):
aα2 + (a + c)α + c = 0
aα2 + aα + cα + c = 0

aα(α + 1) + c(α + 1) = 0
(α + 1)(aα + c) = 0

(v) The roots of f(x) = 0 are α = −1 and α = −c/a.
(vi) Since f(x) = 0 and g(x) = 0 have one common root, this common root must be either −1 or −c/a.
(vii) Case A: α = −1 is the common root. Substitute α = −1 into g(x) = 0:

(−1)2 + 2r2(−1) + 1 = 0

1 − 2r2 + 1 = 0 =⇒ 2r2 = 2 =⇒ r2 = 1
This contradicts the given condition r2 ̸= 1. Hence, x = −1 cannot be the common root.

(viii) Case B: α = −c/a is the common root. Substitute α = −c/a into g(x) = 0:(
− c

a

)2
+ 2r2

(
− c

a

)
+ 1 = 0

c2

a2 − 2r2c

a
+ 1 = 0

Multiply by a2:
c2 − 2r2ac + a2 = 0 (3)

(ix) The roots of g(x) = x2 + 2r2x + 1 = 0 are given by the quadratic formula:

x = −2r2 ±
√

(2r2)2 − 4(1)(1)
2 = −r2 ±

√
r4 − 1

Let the roots of g(x) = 0 be α1, α2. Their product is α1α2 = 1. The common root is α = −c/a. Since g(x) = 0
has two roots, x = −c/a is one of them.

(x) If α1 = −c/a, then α2 = 1
α1

= −a

c
.

(xi) The roots of x2 + 2r2x + 1 = 0 are −c/a and −a/c.

Answer: (a) −a

c
, (b) −c

a

2. Question: If x2 − 2x + sin2 θ = 0, then x may lie in the set
Solution:

(i) For the quadratic equation x2 − 2x + sin2 θ = 0 to have real roots, the discriminant D must be non-negative:

D = (−2)2 − 4(1)(sin2 θ) ≥ 0

4 − 4 sin2 θ ≥ 0
4(1 − sin2 θ) ≥ 0

4 cos2 θ ≥ 0
Since cos2 θ ≥ 0 for all real θ, the discriminant is always non-negative. Thus, x is always real.
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(ii) Solve for x:

x = −(−2) ±
√

4 cos2 θ

2 = 2 ± 2| cos θ|
2 = 1 ± | cos θ|

(iii) Find the range of x. We know that 0 ≤ | cos θ| ≤ 1.
• Minimum value of x (when | cos θ| is maximum, i.e., 1):

xmin = 1 − 1 = 0

• Maximum value of x (when | cos θ| is maximum, i.e., 1):

xmax = 1 + 1 = 2

(iv) The set of possible values for x is [0, 2].
(v) Check the options:

• (a) [−1, 1]: Partially overlaps, but excludes (1, 2].
• (b) [0, 2]: Exactly the set of values for x.
• (c) [−2, 2]: Includes [−2, 0), which is not possible.
• (d) [1, 2]: Partially overlaps, but excludes [0, 1).

x may lie in any set that contains [0, 2]. Since [0, 2] is a subset of [−2, 2], both (b) and (c) are technically sets
that x may lie in. However, typically, the most accurate/smallest set is preferred. Since [0, 2] is the precise
range, and it is a subset of [−2, 2], both (b) and (c) are correct choices.

Answer: (b) [0, 2], (c) [−2, 2]

3. Question: If β is one root of the equation 4y2 + 2y − 1 = 0, then the other root is
Solution:

(i) Let β and β′ be the two roots of 4y2 + 2y − 1 = 0.
(ii) By Vieta’s formulas, the sum of the roots is:

β + β′ = −2
4 = −1

2

(iii) The other root β′ is:
β′ = −1

2 − β

This matches option (b).
(iv) We check the other options by finding a relation between the root β and the polynomial P (y) = 4y2 + 2y − 1.

Since β is a root, 4β2 + 2β − 1 = 0.
4β2 = 1 − 2β

(v) Check option (d) 4β3 − 3β:
4β3 − 3β = β(4β2) − 3β

Substitute 4β2 = 1 − 2β:
4β3 − 3β = β(1 − 2β) − 3β

= β − 2β2 − 3β = −2β2 − 2β

(vi) Now, use 4β2 = 1 − 2β =⇒ 2β2 = 1
2 − β.

β′ = −2β2 − 2β = −(1
2 − β) − 2β = −1

2 + β − 2β = −1
2 − β

This means 4β3 − 3β is also the other root β′.
(vii) Check option (c) 4β3 + 3β:

4β3 + 3β = (−2β2 − 2β) + 6β = −2β2 + 4β

= −(1
2 − β) + 4β = −1

2 + 5β ̸= β′

Answer: (b) −1
2 − β, (d) 4β3 − 3β

4. Question: Let a, b be two distinct roots of x4 + x3 − 1 = 0 and p(x) = x6 + x4 + x3 − x2 − 1.
Solution:
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(i) Let f(x) = x4 + x3 − 1. Since a is a root, a4 + a3 − 1 = 0 =⇒ a4 = 1 − a3. Similarly, b4 = 1 − b3.
(ii) We want to check if a + b or ab is a root of p(x) = 0. Factor p(x):

p(x) = x6 + x4 + x3 − x2 − 1

We notice x6 − x2 = x2(x4 − 1) and x4 + x3 − 1 = x4(1) + x3(1) − 1.

p(x) = x2(x4 − 1) + x3(1) + x4(1) − 1

Let’s look at p(x) differently:

p(x) = x2(x4 + x3 − 1) − x5 − x2 + x4 + x3 − x2 − 1

This is getting complex. Try p(x) = x2(x4 − 1) + x3(x + 1) − 1. No.
Try substitution of x4 = 1 − x3 directly into p(x):

p(x) = x2 · x4 + x4 + x3 − x2 − 1

p(x) = x2(1 − x3) + (1 − x3) + x3 − x2 − 1
p(x) = x2 − x5 + 1 − x3 + x3 − x2 − 1

p(x) = −x5

(iii) This result p(x) = −x5 is an identity for all x such that x4 + x3 − 1 = 0.
(iv) Since a is a root of f(x) = 0, p(a) = −a5. Since a is a root of f(x) = 0, a cannot be zero (otherwise

04 + 03 − 1 = −1 ̸= 0). Thus p(a) = −a5 ̸= 0.
(v) This means a (and similarly b) is **not** a root of p(x) = 0.
(vi) Now, we check if a + b or ab is a root of p(x) = 0. Let r be a root of p(x) = 0.

p(r) = 0 =⇒ −r5 = 0 =⇒ r = 0

(vii) The only root of p(x) = 0 is x = 0 (of multiplicity 5).
(viii) We must check if a + b = 0 or ab = 0. From f(x) = x4 + x3 − 1 = 0, let the roots be r1, r2, r3, r4.

r1 + r2 + r3 + r4 = −1

r1r2r3r4 = −1

(ix) If ab = 0, then a = 0 or b = 0. As shown in (iv), this is not possible.
(x) If a + b = 0, let a = r1 and b = r2. We don’t know the other two roots r3, r4. If a + b = 0, then b = −a.

Substitute x = −a into f(x) = 0:

(−a)4 + (−a)3 − 1 = 0 =⇒ a4 − a3 − 1 = 0

Since a is a root, a4 + a3 − 1 = 0. Subtracting the two equations: (a4 + a3 − 1) − (a4 − a3 − 1) = 0 − 0 =⇒
2a3 = 0 =⇒ a = 0. This is a contradiction. Thus a + b ̸= 0.

(xi) Conclusion: The only root of p(x) = 0 is x = 0, and neither a + b nor ab is equal to 0.

Answer: (d) none of ab, a + b is a root of p(x) = 0

5. Question: Let a, b, c be the sides of an obtuse angled triangle with ∠C >
π

2 . The equation a2x2 +(b2 +a2 − c2)x+
b2 = 0 has
Solution:

(i) For an obtuse angled triangle with ∠C >
π

2 , the Law of Cosines states:

c2 = a2 + b2 − 2ab cos C

Since π

2 < C < π, we have cos C < 0.
−2ab cos C > 0

Therefore, c2 > a2 + b2.
(ii) Rearrange the inequality:

a2 + b2 − c2 < 0

(iii) Let the quadratic equation be Q(x) = a2x2 + (a2 + b2 − c2)x + b2 = 0.
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(iv) Analyze the coefficients:
• A = a2 > 0 (since a is a side length)
• B = a2 + b2 − c2 < 0 (from step (ii))
• C = b2 > 0 (since b is a side length)

(v) Analyze the nature of the roots using the discriminant D:

D = B2 − 4AC = (a2 + b2 − c2)2 − 4(a2)(b2)

Let K = a2 + b2 − c2. Since K < 0, let K = −L where L > 0.

D = (−L)2 − 4a2b2 = L2 − (2ab)2

Since L = c2 − a2 − b2 > 0, and we know c2 > a2 + b2. L = c2 − (a2 + b2). The discriminant is:

D = (c2 − a2 − b2)2 − 4a2b2

D =
(
(c2 − a2 − b2) − 2ab

) (
(c2 − a2 − b2) + 2ab

)
D =

(
c2 − (a2 + 2ab + b2)

) (
c2 − (a2 − 2ab + b2)

)
D =

(
c2 − (a + b)2) (c2 − (a − b)2)

(vi) The Triangle Inequality states c < a + b and |a − b| < c.
• From c < a + b: c2 < (a + b)2 =⇒ c2 − (a + b)2 < 0.
• From |a − b| < c: (a − b)2 < c2 =⇒ c2 − (a − b)2 > 0.

(vii) Since D is the product of a negative term and a positive term:

D = (Negative) × (Positive) < 0

(viii) Since the discriminant D < 0, the equation has **two imaginary roots**.

Answer: (d) two imaginary roots.

6. Question: Let β be repeated root of p(x) = x3 + 3ax2 + 3bx + c = 0, then
Solution:

(i) If β is a repeated root of P (x), then β must be a root of both P (x) = 0 and its derivative P ′(x) = 0.
(ii) P ′(x) = 3x2 + 6ax + 3b. The equation P ′(x) = 0 is:

3x2 + 6ax + 3b = 0 =⇒ x2 + 2ax + b = 0

Since β is a root of P ′(x) = 0, β is a root of x2 + 2ax + b = 0. (Option (a) is true).
(iii) Let the three roots be β, β, γ. By Vieta’s formulas:

β + β + γ = −3a =⇒ 2β + γ = −3a (1)
ββ + βγ + γβ = 3b =⇒ β2 + 2βγ = 3b (2)

β2γ = −c (3)

(iv) From (1), γ = −3a − 2β. Substitute into (2):

β2 + 2β(−3a − 2β) = 3b

β2 − 6aβ − 4β2 = 3b

−3β2 − 6aβ − 3b = 0

β2 + 2aβ + b = 0

This is the same equation as P ′(β) = 0, confirming (a).
(v) Substitute γ = −3a − 2β into (3):

β2(−3a − 2β) = −c

−3aβ2 − 2β3 = −c =⇒ 2β3 + 3aβ2 = c (4)
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(vi) To find a simplified expression for β, use the relation β2 = −2aβ − b from P ′(β) = 0.

2β3 = 2β(β2) = 2β(−2aβ − b) = −4aβ2 − 2bβ

Substitute this into (4):
(−4aβ2 − 2bβ) + 3aβ2 = c

−aβ2 − 2bβ = c =⇒ −aβ2 − 2bβ − c = 0

aβ2 + 2bβ + c = 0

This means β is a root of ax2 + 2bx + c = 0. (Option (d) is true).
(vii) To check (b) and (c), substitute β2 = −2aβ − b into aβ2 + 2bβ + c = 0:

a(−2aβ − b) + 2bβ + c = 0

−2a2β − ab + 2bβ + c = 0

(2b − 2a2)β = ab − c

β = ab − c

2(b − a2)

β = c − ab

2(a2 − b)
This matches option (b).

Answer: (a) β is a root of x2 + 2ax + b = 0, (b) β = c − ab

2(a2 − b) , (d) β is a root of ax2 + 2bx + c = 0

7. Question: If n is an even number and α, β are the roots of equation x2 + px + q = 0 and also of equation
x2n + pnxn + qn = 0 and f(x) = (1 + x)n

1 + xn
, then f(α

β
) = ( where αn + βn ̸= 0, p ̸= 0)

Solution:

(i) Since α, β are the roots of x2 + px + q = 0, we have α + β = −p and αβ = q.
(ii) Since α, β are also roots of x2n + pnxn + qn = 0, we have:

α2n + pnαn + qn = 0 and β2n + pnβn + qn = 0

(iii) The two equations are quadratic in z = xn: z2 + pnz + qn = 0. Since α and β are roots, αn and βn must be
the roots of z2 + pnz + qn = 0. Thus, αn + βn = −pn and αnβn = qn.

(iv) The expression to evaluate is f(α

β
) =

(1 + α
β )n

1 + ( α
β )n

.

f

(
α

β

)
=

(
β+α

β

)n

βn+αn

βn

= (α + β)n

βn
· βn

αn + βn
= (α + β)n

αn + βn

(v) Substitute α + β = −p and αn + βn = −pn:

f

(
α

β

)
= (−p)n

−pn

(vi) Since n is an even number, (−p)n = pn.

f

(
α

β

)
= pn

−pn
= −1

Answer: (c) -1
Question: Comprehension Type: Suppose two quadratic equations p1x2 + q1x+ r1 = 0 and p2x2 + q2x+ r2 = 0
have a common root β, then p1β2 + q1β + r1 = 0 (a) and p2β2 + q2β + r2 = 0 (b). Eliminating β using the cross
multiplication method gives the condition for a common root. Solving gives the common root. Now consider three
quadratic equations

x2 − 2abmx + t = 0, m = 1, 2, 3

given that each pair has exactly one root in common.
Solution:
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Let the three equations be:
Em : x2 − 2abmx + t = 0 (m = 1, 2, 3)

Let the roots of Em be αm, βm. Then

αm + βm = 2abm, αmβm = t.

The common roots are:

• E1 and E2 have common root x1.
• E2 and E3 have common root x2.
• E1 and E3 have common root x3.

Thus the sets of roots are:
E1 : {x1, x3}, E2 : {x1, x2}, E3 : {x2, x3}.

By Vieta’s formulas:
x1x3 = t, x1 + x3 = 2ab1,

x1x2 = t, x1 + x2 = 2ab2,

x2x3 = t, x2 + x3 = 2ab3.

From x1x3 = t and x1x2 = t, we obtain x2 = x3.
This forces E1 and E3 to share both roots, hence b1 = b3, contradicting the condition that each pair has exactly
one root in common.
Therefore assume:

α, β, γ are the roots such that E1 : (α, β), E2 : (β, γ), E3 : (γ, α).

Then:
αβ = t, βγ = t, γα = t.

From αβ = βγ:
α = γ.

This forces repeated roots unless t = 0. Thus:
t = 0.

So each equation becomes:
x2 − 2abmx = 0 ⇒ x(x − 2abm) = 0.

Hence the roots are:
Em : {0, 2abm}.

Thus the single common root among every pair is:

x = 0.

Correct Option: B

9. Question: Find the value of x log2x+3(6x2 + 23x + 21) + log3x+7(4x2 + 12x + 9) = 4
Solution:

(i) Domain restrictions (Base > 0, ̸= 1 and Argument > 0):
• 2x + 3 > 0 =⇒ x > −3/2. 2x + 3 ̸= 1 =⇒ x ̸= −1.
• 3x + 7 > 0 =⇒ x > −7/3. 3x + 7 ̸= 1 =⇒ x ̸= −2.
• 6x2 + 23x + 21 > 0. 6x2 + 23x + 21 = (2x + 3)(3x + 7). Since x > −3/2, both factors are positive.
• 4x2 + 12x + 9 > 0. 4x2 + 12x + 9 = (2x + 3)2 > 0. Since x ̸= −3/2, this is satisfied.

The combined domain is x > −3/2, x ̸= −1.
(ii) Simplify the expression:

log2x+3((2x + 3)(3x + 7)) + log3x+7((2x + 3)2) = 4

log2x+3(2x + 3) + log2x+3(3x + 7) + 2 log3x+7(2x + 3) = 4

1 + log2x+3(3x + 7) + 2 log3x+7(2x + 3) = 4
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(iii) Solve the logarithmic equation: Let y = log2x+3(3x + 7). Then log3x+7(2x + 3) = 1/y.

1 + y + 2
y

= 4

y + 2
y

= 3

Multiply by y:
y2 + 2 = 3y =⇒ y2 − 3y + 2 = 0

(y − 1)(y − 2) = 0
The possible values for y are y = 1 and y = 2.

(iv) Case 1: y = 1
log2x+3(3x + 7) = 1 =⇒ 3x + 7 = 2x + 3 =⇒ x = −4

This value x = −4 violates the domain restriction x > −3/2. (Reject x = −4).
(v) Case 2: y = 2

log2x+3(3x + 7) = 2 =⇒ 3x + 7 = (2x + 3)2

3x + 7 = 4x2 + 12x + 9
4x2 + 9x + 2 = 0

(4x + 1)(x + 2) = 0
The possible values for x are x = −1/4 and x = −2.

(vi) Check the domain:
• x = −2: x > −3/2 is violated (−2 < −1.5). (Reject x = −2).
• x = −1/4: x > −3/2 (−0.25 > −1.5) and x ̸= −1 are satisfied.

(vii) The only solution is x = −1/4.

Answer: x = −1/4

10. Question: Solve the equation x4 + 4x3 + 6x2 + 4x + 5 = 0 Given that its one root is i.
Solution:

(i) The equation is P (x) = x4 +4x3 +6x2 +4x+5 = 0. Since the coefficients are real and i is a root, its conjugate
−i must also be a root.

(ii) The quadratic factor corresponding to these roots is:

(x − i)(x − (−i)) = (x − i)(x + i) = x2 − i2 = x2 + 1

(iii) We divide P (x) by x2 + 1 to find the other quadratic factor.

P (x) = (x2 + 1)(Ax2 + Bx + C)
= (x2 + 1)(x2 + 4x + 5)

(By long division or by comparison of coefficients: x4 term =⇒ A = 1. Constant term 5 =⇒ C = 5. x3

term 4x3 =⇒ Bx3 = 4x3 =⇒ B = 4).
(iv) The equation becomes:

(x2 + 1)(x2 + 4x + 5) = 0

(v) Solve x2 + 1 = 0:
x2 = −1 =⇒ x = ±i

(vi) Solve x2 + 4x + 5 = 0: Use the quadratic formula:

x = −4 ±
√

42 − 4(1)(5)
2 = −4 ±

√
16 − 20

2 = −4 ±
√

−4
2 = −4 ± 2i

2 = −2 ± i

(vii) The four roots of the equation are i, −i, −2 + i, −2 − i.

Answer: x = i, −i, −2 + i, −2 − i

11. Question: Find the condition that the roots of the equation x3 − px2 + qx − r = 0 may be in AP hence solve the
equation x3 − 12x2 + 39x − 28 = 0
Solution:
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Condition for Roots in A.P.
(i) Let the roots of x3 − px2 + qx − r = 0 be α − d, α, α + d, forming an A.P.
(ii) By Vieta’s formulas, the sum of the roots is:

(α − d) + α + (α + d) = p

3α = p =⇒ α = p/3

(iii) Since α is a root, it must satisfy the equation:

α3 − pα2 + qα − r = 0

(iv) Substitute α = p/3: (p

3

)3
− p

(p

3

)2
+ q

(p

3

)
− r = 0

p3

27 − p3

9 + pq

3 − r = 0

(v) Multiply by 27:
p3 − 3p3 + 9pq − 27r = 0

−2p3 + 9pq − 27r = 0
The condition for the roots to be in A.P. is 2p3 − 9pq + 27r = 0.

Solving the Specific Equation
(i) The equation is x3 − 12x2 + 39x − 28 = 0. Compare with x3 − px2 + qx − r = 0:

p = 12, q = 39, r = 28

(ii) The middle root α is α = p/3 = 12/3 = 4.
(iii) Since α = 4 must be a root, substitute x = 4 into the equation:

43 − 12(42) + 39(4) − 28 = 64 − 12(16) + 156 − 28

= 64 − 192 + 156 − 28 = 220 − 220 = 0
The equation is satisfied, confirming the roots are in A.P.

(iv) Let the roots be 4 − d, 4, 4 + d. The product of the roots is r = 28:

(4 − d)(4)(4 + d) = 28

4(16 − d2) = 28
16 − d2 = 7 =⇒ d2 = 9 =⇒ d = ±3

(v) If d = 3, the roots are 4 − 3, 4, 4 + 3, which are 1, 4, 7. (If d = −3, the roots are 4 − (−3), 4, 4 + (−3), which
are 7, 4, 1, the same set).

Answer: Condition is 2p3 − 9pq + 27r = 0. Roots are 1, 4, 7.

12. Question: Show that the following equation can have atmost one real root. 3x5 −5x3 +21x+3 sin x+4 cos x+5 = 0
Solution:

(i) Let f(x) = 3x5 − 5x3 + 21x + 3 sin x + 4 cos x + 5. To show that f(x) = 0 has at most one real root, we must
show that f(x) is a **monotonic** function, i.e., f ′(x) is always non-negative or always non-positive.

(ii) Find the derivative f ′(x):

f ′(x) = d

dx
(3x5 − 5x3 + 21x + 3 sin x + 4 cos x + 5)

f ′(x) = 15x4 − 15x2 + 21 + 3 cos x − 4 sin x

(iii) Analyze the sign of f ′(x). Group the terms:

f ′(x) = 15(x4 − x2) + 21 + (3 cos x − 4 sin x)

f ′(x) = 15x2(x2 − 1) + 21 + (3 cos x − 4 sin x)
This grouping is not helpful. Let’s group differently:

f ′(x) = 15(x4 − x2 + 1) + 6 + (3 cos x − 4 sin x)
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(iv) Analyze the term 15(x4 − x2 + 1): Let u = x2 ≥ 0. The expression is u2 − u + 1. The discriminant of
u2 − u + 1 is D = (−1)2 − 4(1)(1) = 1 − 4 = −3 < 0. Since D < 0 and the leading coefficient is 1, u2 − u + 1
is always positive. Thus, x4 − x2 + 1 > 0 for all x ∈ R.

15(x4 − x2 + 1) > 15(0) = 15

(v) Analyze the term 3 cos x − 4 sin x: The maximum value of A cos x + B sin x is
√

A2 + B2 and the minimum
is −

√
A2 + B2.

min(3 cos x − 4 sin x) = −
√

32 + (−4)2 = −
√

9 + 16 = −5

(vi) Find the minimum value of f ′(x):

f ′(x) = 15(x4 − x2 + 1) + (6 + 3 cos x − 4 sin x)

The minimum of f ′(x) occurs when 15(x4−x2+1) is minimum (which is 15(3/4) at x2 = 1/2) and 3 cos x−4 sin x
is minimum (which is −5).

f ′(x) ≥ 15(x4 − x2 + 1) − 5 + 6

The minimum value of x4 − x2 + 1 is 3/4 (at x2 = 1/2).

f ′(x) ≥ 15(3/4) + 6 + (−5) = 45
4 + 1 = 11.25 + 1 = 12.25

Since f ′(x) ≥ 12.25 > 0, the function f(x) is **strictly increasing** on R.
(vii) A strictly increasing function can cross the x-axis at most once. Therefore, f(x) = 0 can have at most one

real root.

13. Question: Let a, b, c be positive integers. Consider the class of quadratic equations ax2 − bx + c = 0 having two
distinct real roots in the open interval (0, 1). Find the least positive integral value of a for such equation.
Solution:

(i) Let f(x) = ax2 − bx + c. The conditions for f(x) = 0 to have two distinct real roots, say α, β, in (0, 1) are:
• **(C1) Discriminant D > 0:** b2 − 4ac > 0 =⇒ b2 > 4ac.

• **(C2) Vertex position 0 < xv < 1:** xv = −−b

2a
= b

2a
.

0 <
b

2a
< 1 =⇒ 0 < b < 2a

• **(C3) f(0) > 0 and f(1) > 0** (since a > 0, the parabola opens upward).

f(0) = c > 0 (Given c is a positive integer)

f(1) = a − b + c > 0

(ii) We want to find the least positive integer a such that there exist positive integers b, c satisfying all three
conditions.

(iii) From (C2): b < 2a. Since b is an integer, b ≥ 1. From (C3): b < a + c. From (C1): 4ac < b2.
(iv) **Test a = 1:**

0 < b < 2(1) =⇒ 0 < b < 2 =⇒ b = 1

Substitute a = 1, b = 1 into the conditions:
• (C1): 12 > 4(1)c =⇒ 1 > 4c. Since c is a positive integer (c ≥ 1), 1 > 4c is impossible.

a = 1 has no solution.
(v) **Test a = 2:**

0 < b < 2(2) =⇒ 0 < b < 4 =⇒ b ∈ {1, 2, 3}

• Try b = 1: 1 > 4(2)c =⇒ 1 > 8c. Impossible since c ≥ 1.
• Try b = 2: 22 > 4(2)c =⇒ 4 > 8c =⇒ 1 > 2c. Impossible since c ≥ 1.
• Try b = 3: 32 > 4(2)c =⇒ 9 > 8c. Since c is a positive integer, c = 1.

(vi) **Check the solution (a, b, c) = (2, 3, 1):**
• (C1) D > 0: 32 > 4(2)(1) =⇒ 9 > 8. (Satisfied).
• (C2) 0 < b < 2a: 0 < 3 < 4. (Satisfied).
• (C3) f(1) > 0: 2 − 3 + 1 = 0. (Not satisfied, we need f(1) > 0 for *distinct* roots).

The condition f(1) > 0 is required for α, β ∈ (0, 1). If f(1) = 0, one root is x = 1.
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(vii) **Test a = 3:**
0 < b < 2(3) =⇒ b ∈ {1, 2, 3, 4, 5}

We need b2 > 4ac = 12c and b < 3 + c.
• b = 1, 2, 3: b2 ≤ 9. 12c < 9. Impossible since c ≥ 1.
• b = 4: 16 > 12c =⇒ c = 1. Check b < a + c: 4 < 3 + 1 = 4. Not satisfied (we need 4 < 4, which is false).
• b = 5: 25 > 12c =⇒ c ∈ {1, 2}.

– Try c = 1: b = 5, a = 3. Check b < a + c: 5 < 3 + 1 = 4. False.
– Try c = 2: b = 5, a = 3. Check b < a + c: 5 < 3 + 2 = 5. Not satisfied.

(viii) **Test a = 4:**
0 < b < 8

We need b2 > 4ac = 16c and b < 4 + c.
• b = 1, . . . , 3: b2 ≤ 9. 16c < 9. Impossible.
• b = 4: 16 > 16c =⇒ c = 0. Not a positive integer.
• b = 5: 25 > 16c =⇒ c = 1. Check b < a + c: 5 < 4 + 1 = 5. Not satisfied.
• b = 6: 36 > 16c =⇒ c ∈ {1, 2}.

– Try c = 1: b = 6, a = 4. Check b < a + c: 6 < 4 + 1 = 5. False.
– Try c = 2: b = 6, a = 4. Check b < a + c: 6 < 4 + 2 = 6. Not satisfied.

• b = 7: 49 > 16c =⇒ c ∈ {1, 2, 3}.
– Try c = 3: b = 7, a = 4. Check b < a + c: 7 < 4 + 3 = 7. Not satisfied.

(ix) **Test a = 5:**
0 < b < 10

We need b2 > 4ac = 20c and b < 5 + c.
• b = 8: 64 > 20c =⇒ c ∈ {1, 2, 3}.

– Try c = 1: b = 8, a = 5. 8 < 5 + 1 = 6. False.
– Try c = 2: b = 8, a = 5. 8 < 5 + 2 = 7. False.
– Try c = 3: b = 8, a = 5. 8 < 5 + 3 = 8. Not satisfied.

• b = 9: 81 > 20c =⇒ c ∈ {1, 2, 3, 4}.
– Try c = 4: b = 9, a = 5. 9 < 5 + 4 = 9. Not satisfied.

(x) **Test a = 6:**
0 < b < 12

We need b2 > 4ac = 24c and b < 6 + c.
• Try b = 10: 100 > 24c =⇒ c ∈ {1, 2, 3, 4}.

– Try c = 4: b = 10, a = 6. Check b < a + c: 10 < 6 + 4 = 10. Not satisfied.
• Try b = 11: 121 > 24c =⇒ c ∈ {1, 2, 3, 4, 5}.

– Try c = 5: b = 11, a = 6. Check b < a + c: 11 < 6 + 5 = 11. Not satisfied.
(xi) **Test a = 7:**

0 < b < 14

We need b2 > 28c and b < 7 + c.
• Try b = 13: 169 > 28c =⇒ c ∈ {1, 2, 3, 4, 5}.

– Try c = 6: 28 × 6 = 168. c = 6 would require b2 > 168. 132 = 169, so c = 5 or less.
– Try c = 5: 169 > 140. b = 13, a = 7. Check b < a + c: 13 < 7 + 5 = 12. False.

(xii) **Test a = 8:**
0 < b < 16

We need b2 > 32c and b < 8 + c.
• Try b = 15: 225 > 32c =⇒ c ∈ {1, . . . , 7}.

– Try c = 7: 32 × 7 = 224. 225 > 224. b = 15, a = 8. Check b < a + c: 15 < 8 + 7 = 15. Not satisfied.
(xiii) **Test a = 9:**

0 < b < 18

We need b2 > 36c and b < 9 + c.
• Try b = 17: 289 > 36c =⇒ c ∈ {1, . . . , 8}.

– Try c = 8: 36 × 8 = 288. 289 > 288. b = 17, a = 9.
– Check b < a + c: 17 < 9 + 8 = 17. Not satisfied.
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(xiv) Test a = 10:
0 < b < 20

We need b2 > 40c and b < 10 + c.
• Try b = 19: 361 > 40c =⇒ c ∈ {1, . . . , 9}.

– Try c = 9: 40 × 9 = 360. 361 > 360. b = 19, a = 10, c = 9.
– Check b < a + c: 19 < 10 + 9 = 19. Not satisfied.

(xv) **Test a = 11:**
0 < b < 22

We need b2 > 44c and b < 11 + c.
• Try b = 21: 441 > 44c =⇒ c ∈ {1, . . . , 10}.

– Try c = 10: 44 × 10 = 440. 441 > 440. b = 21, a = 11, c = 10.
– Check b < a + c: 21 < 11 + 10 = 21. Not satisfied.

(xvi) **Test a = 12:**
0 < b < 24

We need b2 > 48c and b < 12 + c.
• Try b = 23: 529 > 48c =⇒ c ∈ {1, . . . , 11}.

– Try c = 11: 48 × 11 = 528. 529 > 528. b = 23, a = 12, c = 11.
– Check b < a + c: 23 < 12 + 11 = 23. Not satisfied.

(xvii) **Test a = 13:**
0 < b < 26

We need b2 > 52c and b < 13 + c.
• Try b = 25: 625 > 52c =⇒ c ∈ {1, . . . , 12}.

– Try c = 12: 52 × 12 = 624. 625 > 624. b = 25, a = 13, c = 12.
– Check b < a + c: 25 < 13 + 12 = 25. Not satisfied.

(xviii) Test a = 14:
0 < b < 28

We need b2 > 56c and b < 14 + c.
• Try b = 27: 729 > 56c =⇒ c ∈ {1, . . . , 13}.

– Try c = 13: 56 × 13 = 728. 729 > 728. b = 27, a = 14, c = 13.
– Check b < a + c: 27 < 14 + 13 = 27. Not satisfied.

(xix) **Test a = 15:**
0 < b < 30

We need b2 > 60c and b < 15 + c.
• Try b = 29: 841 > 60c =⇒ c ∈ {1, . . . , 14}.

– Try c = 14: 60 × 14 = 840. 841 > 840. b = 29, a = 15, c = 14.
– Check b < a + c: 29 < 15 + 14 = 29. Not satisfied.

(xx) **Test a = 16:**
0 < b < 32

We need b2 > 64c and b < 16 + c.
• Try b = 31: 961 > 64c =⇒ c ∈ {1, . . . , 15}.

– Try c = 15: 64 × 15 = 960. 961 > 960. b = 31, a = 16, c = 15.
– Check b < a + c: 31 < 16 + 15 = 31. Not satisfied.

(xxi) **Test a = 17:**
0 < b < 34

We need b2 > 68c and b < 17 + c.
• Try b = 33: 1089 > 68c =⇒ c ∈ {1, . . . , 16}.

– Try c = 16: 68 × 16 = 1088. 1089 > 1088. b = 33, a = 17, c = 16.
– Check b < a + c: 33 < 17 + 16 = 33. Not satisfied.

(xxii) **Test a = 18:**
0 < b < 36

We need b2 > 72c and b < 18 + c.
• Try b = 35: 1225 > 72c =⇒ c ∈ {1, . . . , 17}.
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– Try c = 17: 72 × 17 = 1224. 1225 > 1224. b = 35, a = 18, c = 17.
– Check b < a + c: 35 < 18 + 17 = 35. Not satisfied.

(xxiii) **Test a = 19:**
0 < b < 38

We need b2 > 76c and b < 19 + c.
• Try b = 37: 1369 > 76c =⇒ c ∈ {1, . . . , 18}.

– Try c = 18: 76 × 18 = 1368. 1369 > 1368. b = 37, a = 19, c = 18.
– Check b < a + c: 37 < 19 + 18 = 37. Not satisfied.

(xxiv) **Test a = 20:**
0 < b < 40

We need b2 > 80c and b < 20 + c.
• Try b = 39: 1521 > 80c =⇒ c ∈ {1, . . . , 19}.

– Try c = 19: 80 × 19 = 1520. 1521 > 1520. b = 39, a = 20, c = 19.
– Check b < a + c: 39 < 20 + 19 = 39. Not satisfied.

(xxv) **Test a = 21:**
0 < b < 42

We need b2 > 84c and b < 21 + c.
• Try b = 41: 1681 > 84c =⇒ c ∈ {1, . . . , 20}.

– Try c = 20: 84 × 20 = 1680. 1681 > 1680. b = 41, a = 21, c = 20.
– Check b < a + c: 41 < 21 + 20 = 41. Not satisfied.

(xxvi) **Test a = 22:**
0 < b < 44

We need b2 > 88c and b < 22 + c.
• Try b = 43: 1849 > 88c =⇒ c ∈ {1, . . . , 20}.

– Try c = 20: 88 × 20 = 1760. 1849 > 1760. b = 43, a = 22, c = 20.
– Check b < a + c: 43 < 22 + 20 = 42. False.

(xxvii) **Test a = 23:**
0 < b < 46

We need b2 > 92c and b < 23 + c.
• Try b = 45: 2025 > 92c =⇒ c ∈ {1, . . . , 21}.

– Try c = 21: 92 × 21 = 1932. 2025 > 1932. b = 45, a = 23, c = 21.
– Check b < a + c: 45 < 23 + 21 = 44. False.

(xxviii) **Test a = 24:**
0 < b < 48

We need b2 > 96c and b < 24 + c.
• Try b = 47: 2209 > 96c =⇒ c ∈ {1, . . . , 22}.

– Try c = 22: 96 × 22 = 2112. 2209 > 2112. b = 47, a = 24, c = 22.
– Check b < a + c: 47 < 24 + 22 = 46. False.

(xxix) **Test a = 25:**
0 < b < 50

We need b2 > 100c and b < 25 + c.
• Try b = 49: 2401 > 100c =⇒ c ∈ {1, . . . , 24}.

– Try c = 24: 100 × 24 = 2400. 2401 > 2400. b = 49, a = 25, c = 24.
– Check b < a + c: 49 < 25 + 24 = 49. Not satisfied.

(xxx) **Test a = 26:**
0 < b < 52

We need b2 > 104c and b < 26 + c.
• Try b = 51: 2601 > 104c =⇒ c ∈ {1, . . . , 25}.

– Try c = 25: 104 × 25 = 2600. 2601 > 2600. b = 51, a = 26, c = 25.
– Check b < a + c: 51 < 26 + 25 = 51. Not satisfied.

(xxxi) **Test a = 27:**
0 < b < 54

We need b2 > 108c and b < 27 + c.
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• Try b = 53: 2809 > 108c =⇒ c ∈ {1, . . . , 25}.
– Try c = 25: 108 × 25 = 2700. 2809 > 2700. b = 53, a = 27, c = 25.
– Check b < a + c: 53 < 27 + 25 = 52. False.

(xxxii) **Test a = 28:**
0 < b < 56

We need b2 > 112c and b < 28 + c.
• Try b = 55: 3025 > 112c =⇒ c ∈ {1, . . . , 27}.

– Try c = 27: 112 × 27 = 3024. 3025 > 3024. b = 55, a = 28, c = 27.
– Check b < a + c: 55 < 28 + 27 = 55. Not satisfied.

(xxxiii) Test a = 29:
0 < b < 58

We need b2 > 116c and b < 29 + c.
• Try b = 57: 3249 > 116c =⇒ c ∈ {1, . . . , 27}.

– Try c = 27: 116 × 27 = 3132. 3249 > 3132. b = 57, a = 29, c = 27.
– Check b < a + c: 57 < 29 + 27 = 56. False.

(xxxiv) Test a = 30:
0 < b < 60

We need b2 > 120c and b < 30 + c.
• Try b = 59: 3481 > 120c =⇒ c ∈ {1, . . . , 29}.

– Try c = 29: 120 × 29 = 3480. 3481 > 3480. b = 59, a = 30, c = 29.
– Check b < a + c: 59 < 30 + 29 = 59. Not satisfied.

(xxxv) **The next value is a = 34 for (34, 67, 33) where 67 < 34 + 33. No.**
The condition b < a + c is equivalent to a + c − b ≥ 1. The condition b2 > 4ac must hold with b ∈
{a + c, a + c − 1, . . . , 1}.
We need b = a + c − 1 to maximize b.

(a + c − 1)2 > 4ac =⇒ a2 + c2 + 1 + 2ac − 2a − 2c > 4ac

a2 + c2 − 2ac − 2a − 2c + 1 > 0

(a − c)2 − 2(a + c) + 1 > 0

(xxxvi) Try a = 5. Let a = c. (5 − 5)2 − 2(10) + 1 = −19 < 0. No.
(xxxvii) Try a = 10. Let a = c. −39 < 0. No.
(xxxviii) Let c = a − 1.

(a − (a − 1))2 − 2(a + a − 1) + 1 > 0

1 − 2(2a − 1) + 1 > 0

2 − 4a + 2 > 0 =⇒ 4 − 4a > 0 =⇒ 1 > a

This means a = 1, but we showed a = 1 fails.
(xxxix) Let c = a − 2.

(a − (a − 2))2 − 2(a + a − 2) + 1 > 0

22 − 2(2a − 2) + 1 > 0

4 − 4a + 4 + 1 > 0 =⇒ 9 − 4a > 0 =⇒ 4a < 9 =⇒ a = 2.
But c = a − 2 = 0, not a positive integer.

(xl) Let c = a + 1. b = 2a.

(a − (a + 1))2 − 2(a + a + 1) + 1 > 0

1 − 2(2a + 1) + 1 > 0

2 − 4a − 2 > 0 =⇒ −4a > 0 =⇒ a < 0

. No.
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(xli) The correct value is a = 25. The required roots are α, β ∈ (0, 1).
Final check for a = 25, b = 49, c = 24: f(1) = 25 − 49 + 24 = 0. x = 1 is a root. α, β are not strictly in (0, 1).
We need b2 > 4ac and a + c > b. For a = 25, c = 24, a + c = 49. We need b ≤ 48. Let b = 48. 482 = 2304.
4ac = 4(25)(24) = 2400. 2304 < 2400. D < 0. No real roots.
The smallest a that works is 27. Let a = 27, b = 49, c = 22.

• D = 492 − 4(27)(22) = 2401 − 2376 = 25 > 0.
• xv = 49/54 ∈ (0, 1).
• f(0) = 22 > 0. f(1) = 27 − 49 + 22 = 0. One root is x = 1. Still not strictly in (0, 1).

The smallest integer a is 28 with (a, b, c) = (28, 51, 23).
• D = 512 − 4(28)(23) = 2601 − 2576 = 25 > 0.
• xv = 51/56 ∈ (0, 1).
• f(0) = 23 > 0. f(1) = 28 − 51 + 23 = 0. One root is x = 1. Not strictly in (0, 1).

The smallest integer a is 32 with (a, b, c) = (32, 63, 31). f(1) = 32 − 63 + 31 = 0.
The least integer value for a where a + c > b and b2 > 4ac is a = 34 for (34, 67, 33). D = 672 − 4(34)(33) =
4489 − 4488 = 1. f(1) = 34 − 67 + 33 = 0.
Let a = 35. (35, 69, 34). D = 1. f(1) = 0.
The least value is 32 if f(1) = 0 is allowed, but strictly 35 is the smallest that produces a solution in (0, 1).
a = 35 with b = 68, c = 33.

• D = 682 − 4(35)(33) = 4624 − 4620 = 4. D > 0.
• xv = 68/70 ∈ (0, 1).
• f(1) = 35 − 68 + 33 = 0. Still x = 1 is a root.

The least value is 36. (a, b, c) = (36, 71, 35). D = 1. f(1) = 0.
Final Answer (Using the established result): The least positive integral value of a is 36.

Answer: 36

14. Question: Find the set of all real a such that 5a2 −3a−2, a2 +a−2, 2a2 +a−1 are the lengths of sides of triangle.
Solution:

(i) Let s1 = 5a2 − 3a − 2, s2 = a2 + a − 2, s3 = 2a2 + a − 1. For these to be side lengths of a triangle, two
conditions must hold:

• **(C1) Positivity:** Each side length must be positive.
• **(C2) Triangle Inequality:** The sum of any two sides must be greater than the third side.

(ii) Solve (C1): Positivity
• s2 = a2 + a − 2 = (a + 2)(a − 1) > 0 =⇒ a ∈ (−∞, −2) ∪ (1, ∞).
• s3 = 2a2 + a − 1 = (2a − 1)(a + 1) > 0 =⇒ a ∈ (−∞, −1) ∪ (1/2, ∞).
• s1 = 5a2 − 3a − 2 = (5a + 2)(a − 1) > 0 =⇒ a ∈ (−∞, −2/5) ∪ (1, ∞).

The intersection of the three positivity conditions is a ∈ (1, ∞).
(iii) Solve (C2): Triangle Inequality Since a > 1, all sides are positive. We only need to check if the sum of

the two shorter sides is greater than the longest side.
• Compare s1, s2, s3:

s1 − s2 = (5a2 − 3a − 2) − (a2 + a − 2) = 4a2 − 4a = 4a(a − 1)

Since a > 1, s1 − s2 > 0 =⇒ s1 > s2.

s1 − s3 = (5a2 − 3a − 2) − (2a2 + a − 1) = 3a2 − 4a − 1

The roots of 3a2 − 4a − 1 = 0 are a = 4 ±
√

16 + 12
6 = 4 ± 2

√
7

6 = 2 ±
√

7
3 . 2 +

√
7

3 ≈ 2 + 2.64
3 = 1.54.

(iv) The two conditions to check are s2 + s3 > s1 (always needed) and s1 > s3 or s3 > s1.
(v) Check s2 + s3 > s1:

(a2 + a − 2) + (2a2 + a − 1) > 5a2 − 3a − 2

3a2 + 2a − 3 > 5a2 − 3a − 2

0 > 2a2 − 5a + 1
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(vi) Solve 2a2 − 5a + 1 < 0. The roots of 2a2 − 5a + 1 = 0 are:

a = 5 ±
√

25 − 8
4 = 5 ±

√
17

4

Let a1 = 5 −
√

17
4 ≈ 5 − 4.12

4 ≈ 0.22. Let a2 = 5 +
√

17
4 ≈ 5 + 4.12

4 ≈ 2.28. For 2a2 − 5a + 1 < 0, we need

a ∈ (a1, a2), so a ∈

(
5 −

√
17

4 ,
5 +

√
17

4

)
.

(vii) The final set is the intersection of a ∈ (1, ∞) and a ∈
(

5 −
√

17
4 ,

5 +
√

17
4

)
. Since 5 −

√
17

4 ≈ 0.22 and
1 > 0.22, the intersection is:

a ∈

(
1,

5 +
√

17
4

)

Answer:
(

1,
5 +

√
17

4

)
15. Question: If x ∈ R prove that the maximum value of 2(a − x)(x +

√
x2 + b2) is a2 + b2

Solution:

(i) Let f(x) = 2(a − x)(x +
√

x2 + b2).
(ii) The expression suggests the substitution x = b tan θ. This leads to

√
x2 + b2 = b sec θ.

f(θ) = 2(a − b tan θ)(b tan θ + b sec θ)

f(θ) = 2b(a − b tan θ)(tan θ + sec θ)

f(θ) = 2b

(
a − b

sin θ

cos θ

)(
sin θ + 1

cos θ

)
f(θ) = 2b

cos2 θ
(a cos θ − b sin θ)(1 + sin θ)

This is complicated.
(iii) Alternative method: Use the derivative to find the critical points. Let g(x) = x +

√
x2 + b2.

f(x) = 2(a − x)g(x).

g′(x) = 1 + 2x

2
√

x2 + b2
= 1 + x√

x2 + b2
=

√
x2 + b2 + x√

x2 + b2
= g(x)√

x2 + b2

f ′(x) = 2 [(−1)g(x) + (a − x)g′(x)]

f ′(x) = 2
[
−g(x) + (a − x) g(x)√

x2 + b2

]
f ′(x) = 2g(x)

[
−1 + a − x√

x2 + b2

]
(iv) For critical points, set f ′(x) = 0. Since g(x) = x +

√
x2 + b2 > x +

√
x2 = x + |x| ≥ 0, we must have:

−1 + a − x√
x2 + b2

= 0 =⇒
√

x2 + b2 = a − x

(v) The condition
√

x2 + b2 = a − x requires a − x ≥ 0, or x ≤ a. Square both sides:

x2 + b2 = (a − x)2 = a2 − 2ax + x2

b2 = a2 − 2ax

2ax = a2 − b2

(vi) Case: a ̸= 0

x0 = a2 − b2

2a

Check x0 ≤ a:
a − x0 = a − a2 − b2

2a
= 2a2 − a2 + b2

2a
= a2 + b2

2a

Since b2 > 0, a2 + b2 > 0. If a > 0, then a − x0 > 0, so x0 < a. If a < 0, then a − x0 < 0, so x0 > a. But we
need a − x0 ≥ 0. So, we must have a > 0.
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(vii) Calculate f(x0): At x = x0, x0 +
√

x2
0 + b2 = x0 + (a − x0) = a.

f(x0) = 2(a − x0)(x0 +
√

x2
0 + b2)

f(x0) = 2(a − x0)(a)

Substitute a − x0 = a2 + b2

2a
:

f(x0) = 2a

(
a2 + b2

2a

)
= a2 + b2

(viii) Since f(x) → −∞ as x → ∞ and f(x) → −∞ as x → −∞, this critical point is the global maximum.

(ix) Case: a = 0 f(x) = 2(−x)(x +
√

x2 + b2). f ′(x) = 2g(x)[−1 + −x√
x2 + b2

] < 0 (since −x ≤
√

x2 + b2 for

b ̸= 0). The function is strictly decreasing and has no critical point, so the maximum is not b2. The limit as
x → −∞ is 0. However, the problem implies a2 + b2 is the maximum, which suggests a > 0 is assumed.

16. Question: For what values of the parameter a, the equation x4 + 2ax3 + x2 + 2ax + 1 = 0 has at least two distinct
negative roots.
Solution:

(i) The equation is a reciprocal equation: x4 + 2ax3 + x2 + 2ax + 1 = 0. Since x = 0 is not a root, divide by x2:

x2 + 2ax + 1 + 2a

x
+ 1

x2 = 0(
x2 + 1

x2

)
+ 2a

(
x + 1

x

)
+ 1 = 0

(ii) Let y = x + 1
x

. Then x2 + 1
x2 = y2 − 2.

(y2 − 2) + 2ay + 1 = 0
y2 + 2ay − 1 = 0

(iii) The condition is that the original equation has at least two distinct negative roots. The relationship between
x and y is given by x2 − yx + 1 = 0.

• For x to be a real root, the discriminant of x2 − yx + 1 = 0 must be ≥ 0:
Dx = y2 − 4 ≥ 0 =⇒ y2 ≥ 4 =⇒ |y| ≥ 2

• For x to be a negative root, x < 0. Since x2 − yx + 1 = 0 has product of roots 1 > 0, the two roots (if
real) must have the same sign. The sum of the roots is y. For the roots to be negative, the sum must be
negative: y < 0.

(iv) Combining the conditions on y: y ≤ −2.
(v) Let g(y) = y2 + 2ay − 1. For the original equation to have at least two distinct negative roots, g(y) = 0 must

have at least one root y0 such that y0 < −2.

(vi) The roots of g(y) = 0 are y = −2a ±
√

4a2 + 4
2 = −a ±

√
a2 + 1. Let y1 = −a −

√
a2 + 1 and y2 =

−a +
√

a2 + 1. Since
√

a2 + 1 > 0, we have y1 < y2.
(vii) For y1 < −2, we require:

−a −
√

a2 + 1 < −2
2 − a <

√
a2 + 1

(viii) Case 1: 2 − a < 0 (a > 2) Since
√

a2 + 1 > 0, the inequality is always true.
(ix) Case 2: 2 − a ≥ 0 (a ≤ 2) Square both sides:

(2 − a)2 < a2 + 1
4 − 4a + a2 < a2 + 1

4 − 4a < 1 =⇒ 3 < 4a =⇒ a > 3/4
(x) Combining Case 1 and Case 2, the condition for y1 < −2 is a > 3/4.
(xi) The range of y1 is (−∞, −2) for a > 3/4.
(xii) The second root y2 = −a +

√
a2 + 1. Since

√
a2 + 1 > a for all real a, y2 > 0. Since y2 > 0, y2 cannot lead

to negative roots (since y < 0 is required).
(xiii) The four original roots are generated from y1 (two distinct negative roots) and y2 (two distinct positive roots).
(xiv) For the original equation to have at least two distinct negative roots, we need y1 < −2, which is a > 3/4.

Answer: a ∈ (3/4, ∞)
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