

SETS, RELATIONS & FUNCTIONS - SET 1

1. If $n(A) = 8, n(A \cap B) = 2$, then $n(A-B)$ is equal to
 - (a) 8
 - (b) 2
 - (c) 4
 - (d) 6
2. Which of the following is null set
 - (a) $\{x : |x| < 1, x \in N\}$
 - (b) $\{x : |x| = 5, x \in N\}$
 - (c) $\{x : x^2 = 1, x \in Z\}$
 - (d) $\{x : x^2 + 2x + 1 = 0, x \in R\}$
3. If $A = \{x : x = 4n + 1, 2 \leq n \leq 5\}$, then number of subsets of A is :
 - (a) 16
 - (b) 15
 - (c) 4
 - (d) none of these
4. $A - (B \cup C)$ is equal to
 - (a) $(A - B) \cap (A - C)$
 - (b) $(A - B) \cup (A - C)$
 - (c) $(A \cap B) - C$
 - (d) none of these
5. The relation "congruence modulo m" is :
 - (a) reflexive only
 - (b) transitive only
 - (c) symmetric only
 - (d) an equivalence relation
6. If $f : R \rightarrow R$ is defined by $f(x) = \sin x$ and $g : (1, \infty) \rightarrow R$ is defined by $g(x) = \sqrt{x^2 - 1}$, then $gof(x)$ is
 - (a) $\sqrt{\sin(x^2 - 1)}$
 - (b) $\sin\sqrt{x^2 - 1}$
 - (c) $\cos x$
 - (d) not defined
7. Let $A = \{2, 3, 4, 5\}$ and $R = \{(2, 2)(3, 3)(4, 4)(5, 5)\}$ be a relation in A. Then R is
 - (a) reflexive
 - (b) symmetric
 - (c) transitive
 - (d) none of these

8. If $A = \{5, 6, 7\}$, $B = \{1, 2, 3, 4\}$ then number of elements in set $A \times B \times B$ is equal to

- 36
- 48
- 16
- none of these

9. If R is a relation on set A such that $R = R^{-1}$ then R is

- reflexive
- symmetric
- transitive
- none of these

10. A set contains n elements. Then the power set contains

- n^2 elements
- n elements
- $(2n-1)$ elements
- 2^n elements

11. Let R and S be two equivalence relations in a set A . Then

- $R \cup S$ is an equivalence relation in A
- $R \cap S$ is an equivalence relation in A
- $R - S$ is an equivalence relation in A
- none of these

12. If two sets A and B are having 99 elements in common, then the number of elements common to each of the sets $A \times B$ and $B \times A$ are

- 2^{99}
- 99^2
- 100
- 18

13. The function $f(x) = \log(x-1) - \log(x-2)$ and $g(x) = \log(\frac{x-1}{x-2})$ are identical when x lies in the interval

- $(2, \infty)$
- $(-2, \infty)$
- $(0, \infty)$
- $[1, \infty)$

14. If $N_a = \{an : n \in N\}$, then $N_3 \cap N_4$ is equal to :

- N_7
- N_{12}
- N_3
- N_4

15. R is a relation over the set of real numbers and it is given $nm \geq 0$. Then R is

- (a) symmetric and transitive
- (b) reflexive and symmetric
- (c) a partial order relation
- (d) an equivalence relation

16. Let $f : R \rightarrow R, g : R \rightarrow R$ be two functions given by $f(x) = 2x - 3$, $g(x) = x^3 + 5$. Then $(fog)^{-1}(x)$ is equal to

- (a) $(\frac{x-7}{3})^{1/4}$
- (b) $(\frac{x-5}{2})^{1/3}$
- (c) $(\frac{x-7}{2})^{1/3}$
- (d) $(\frac{2x-7}{2})^{2/3}$

17. If $2f(x) - 3f(\frac{1}{x}) = x^2$, x is not equal to zero, then $f(2)$ is

- (a) $\frac{-7}{4}$
- (b) $\frac{-3}{4}$
- (c) $\frac{5}{4}$
- (d) $\frac{-7}{9}$

SET 1 - MIXED QUESTION TYPES

1. Let $f(x) = 3x - 5$, then $f^{-1}(x) :$

- (a) is given by $\frac{1}{3x-5}$
- (b) is given by $\frac{x+5}{3}$
- (c) does not exist because f is not one one.
- (d) does not exist because f is not onto.

2. Number of values of x for which $|||x^2 - x + 4| - 2| - 3| = x^2 + x - 12$ is

3. The function $f(x) = \log(x-1) - \log(x-2)$ and $g(x) = \log(\frac{x-1}{x-2})$ are identical when x lies in the interval

- (a) $(2, \infty)$
- (b) $(-2, \infty)$
- (c) $(0, \infty)$
- (d) $[1, \infty)$

4. Let $f : [1, \infty) \rightarrow [2, \infty)$ is given by $f(x) = x + \frac{1}{x}$ then $f^{-1}x$ is equal to :

- (a) $\frac{x+\sqrt{x^2-4}}{2}$
- (b) $\frac{x}{1+x^2}$
- (c) $\frac{x-\sqrt{x^2-4}}{2}$
- (d) $1 + \sqrt{x^2 - 4}$

5. The values of $f(x) = 3\sin(\sqrt{\frac{\pi^2}{16} - x^2})$ lie in the interval..

6. Let f be a real valued invertible function such that $f(\frac{2x-3}{x-2}) = 5x - 2, x \neq 2$, Then value of $f^{-1}(13)$ is
.....

7. If $f(x) = \cos(\ln x)$, then $f(x)f(y) - \frac{1}{2}[f(\frac{x}{y}) + f(xy)]$ has the value :
(a) -1
(b) $\frac{1}{2}$
(c) -2
(d) none of these

8. Let $f : R^+ \rightarrow R$ be a function which satisfies $f(x)f(y) = f(xy) + 2(\frac{1}{x} + \frac{1}{y} + 1)$ for $x, y > 0$ then possible value of $f(1/2)$ is