Complex Numbers

SET 1

Fill in the Blanks

- 1. If the expression $\frac{[\sin(\frac{x}{2})+\cos(\frac{x}{2})-i\tan(x)]}{[1+2i\sin(\frac{x}{2})]}$ is real, then the set of all possible values of x is
- 2. For any two complex numbers z_1, z_2 and any real numbers a and b, $|az_1 bz_2|^2 + |bz_1 + az_2|^2 = \dots$
- 3. If a and b are real numbers between 0 and 1 such that the points $z_1 = a + i$, $z_2 = 1 + bi$ and $z_3 = 0$ form an equilateral triangle then a = ... and b = ...

TRUE / FALSE

- 4. For complex numbers $z_1=x_1+iy_1$ and $z_2=x_2+iy_2$, we write $z_1\cap z_2$, if $x_1\leq x_2$ and $y_1\leq y_2$. Then for all complex numbers z with $1\cap z$, we have $\frac{1-z}{1+z}\cap 0$
- 5. If the complex numbers, z_1, z_2 and z_3 represent the vertices of an equilateral triangle such that $|z_1| = |z_2| = |z_3|$, then $z_1 + z_2 + z_3 = 0$

OBJECTIVE TYPE Only one option is correct

- 6. The smallest positive integer n for which $(\frac{1+i}{1-i})^n=1$, is A. 8 B. 16 C. 12 D. none of these
- 7. The complex numbers z=x+iy which satisfy the equation $|\frac{z-5i}{z+5i}|=1$ lie on:
 A. the x axis B. the straight line y=5 C. a circle passing through the origin D. none of these
- 8. If $z=(\frac{\sqrt{3}}{2}+\frac{i}{2})^5+(\frac{\sqrt{3}}{2}-\frac{i}{2})^5$, then : A. Re(z)=0 B. Im(z)=0 C. Re(z)>0, Im(z)>0 D. Re(z)>0, Im(z)<0
- 9. The inequality |z-4|<|z-2| represents the region given by : A. $Re(z)\geq 0$ B. Re(z)<0 C. Re(z)>0 D. none of these
- 10. If z = x+iy and $w = \frac{(1-iz)}{(z-i)}$ then |w| = 1 implies that, in the complex plane:

 A. z lies on the imaginary axis

 B. z lies on the real axis

 C. z lies on the unit circle

 D. none of these
- 11. The point z_1, z_2, z_3, z_4 in the complex plane are the vertices of a parallelogram taken in order , if and only if :

A.
$$z_1 + z_4 = z_2 + z_3$$
 B. $z_1 + z_3 = z_2 + z_4$ C. $z_1 + z_2 = z_3 + z_4$ D. none of these

- 12. If a,b,c and u,v,w are complex numbers representing the vertices of two triangle such that c=(1-r)a+rb and w=(1-r)u+rv, where r is a complex number, then the two triangles:

 A. have the same area B. are similar C. are congruent D. none of these
- 13. The value of $\sum_{k=1}^6 (\sin\frac{2\pi}{7}-i\cos\frac{2\pi k}{7})$ is : A. -1 B. 0 C. -i D. i
- 14. If z_1 and z_2 are two non zero complex numbers such that $|z_1 + z_2| = |z_1| + |z_2|$, then $\arg z_1 \arg z_2$ is equal to:

A.
$$-\pi$$
 B. $-\frac{\pi}{2}$ C. 0 D. $\frac{\pi}{2}$ E. π

- 15. The complex numbers $\sin x + i \cos 2x$ and $\cos x i \sin 2x$ are conjugate to each other, for : A. $x = n\pi$ B. x=0 C. $x=(n+\frac{1}{2})\pi$ D. no value of x
- 16. If $\omega \neq 1$ is a cube root of unity and $(1 + \omega)^7 = A + B\omega$, then A and B are respectively : A. 0,1 B. 1,1 C. $\overline{\omega}$ D. $-\overline{\omega}$