Limits and Continuity – Set 1

Instructions for Solving the DPP (Daily Practice Problems)

1. Purpose of the DPP

- This DPP is designed to strengthen concept clarity for both **JEE Main** and **JEE Advanced**.
- Problems are arranged in increasing order of difficulty:
 - Level-1: JEE Main oriented
 - Level-2: Mixed Main + Advanced
 - Level-3: JEE Advanced oriented

2. How to Attempt the DPP

- 1. Read the theory from your notes before attempting the problems.
- 2. Do not jump between questions; solve sequentially unless instructed otherwise.
- 3. For each question, write:
 - Key concept involved
 - Formula used
 - Corrected approach if you made an error
- 4. Maintain a separate **DPP Mistake Notebook**.

3. Recommended Time Allocation

- Total time per DPP: 45-60 minutes
- Follow the recommended per-question time:
 - Single Correct / Objective: 1-2 minutes
 - Numerical Value: **2–3 minutes**
 - Integer Type: **3–4 minutes**
 - Advanced Multi-Correct: **4–6 minutes**
 - Paragraph (Advanced): 6-8 minutes
- Mark questions exceeding time limit with a star (*) and revisit after finishing the DPP.

4. Best Practices for Scoring Higher

- Focus on accuracy first, then speed.
- Review every calculation step—most mistakes arise from small algebraic slips.
- Solve advanced problems only after finishing Main-level questions for the chapter.
- Revise solved DPPs weekly and note repeating mistake patterns.
- Use short notes for formulas, special results, and commonly used approximations.
- After solving, compare your approach with the official solution or teacher's method.
- Build endurance by solving at least one DPP in exam-like conditions daily.

5. Evaluation Guidelines

- Award yourself:
 - +4 / -1 for JEE Main pattern questions.
 - Partial marking for JEE Advanced style multi-correct.
- Maintain a cumulative score record for every DPP set.
- Track:
 - Chapters with highest accuracy
 - Chapters needing revision
 - Time taken per DPP
 - Common error types

6. Weekly Review Checklist

- Reattempt the unsolved or incorrect problems from the past 5–7 DPPs.
- Update your formula sheet and mistake notebook.
- Solve at least one mixed-topic DPP to test retention.

By: www.udgamwelfarefoundation.com (helping students since 2012)

Daily Practice Problems

Multiple Choice Questions

1. Evaluate the following limit:

$$\lim_{x \to 0} \frac{x \cos x - \sin x}{x^2 \sin x}$$

- (a) $\frac{1}{3}$
- (b) $-\frac{1}{3}$
- (c) $\frac{1}{6}$
- (d) $-\frac{1}{6}$
- 2. Prove that the following limit equals 2:

$$\lim_{x \to \infty} \frac{(3x-1)(2x+5)}{(x-3)(3x+7)}$$

The value of the limit is:

- (a) 1
- (b) 2
- (c) 3
- (d) 6
- 3. Show that the following inequality is true:

$$\lim_{x\to -2}\frac{\tan\pi x}{x+2}+\lim_{x\to \infty}\left(1+\frac{1}{x^2}\right)^x>3$$

The value of the left hand side is:

- (a) $\pi + 1$
- (b) π
- (c) 2π
- (d) $\pi + 2$
- 4. If f(2) = 4 and f'(2) = 1, then $\lim_{x \to 2} \frac{xf(2) 2f(x)}{x 2}$ equals:
 - (a) 2
 - (b) 4
 - (c) 6
 - (d) 0
- 5. Find the value of the two-sided limit (if it exists):

$$\lim_{x \to 2} \frac{|x^2 - 4|}{x - 2}$$

- (a) 4
- (b) 0
- (c) 2
- (d) Does not exist
- 6. Find the value of $\lim_{n\to\infty} \left[\frac{1}{n^3+1} + \frac{4}{n^3+1} + \frac{9}{n^3+1} + \dots + \frac{n^2}{n^3-1} \right]$
 - (a) $\frac{1}{2}$

- (b) $\frac{1}{3}$
- (c) 0
- (d) 1
- 7. Evaluate the limit:

$$\lim_{n \to \infty} \cos\left(\frac{x}{2}\right) \cos\left(\frac{x}{4}\right) \cos\left(\frac{x}{8}\right) \cdots \cos\left(\frac{x}{2^n}\right)$$

- (a) $\frac{\cos x}{x}$ (b) $\frac{\sin x}{x}$
- (c) $\sin x$
- (d) 1
- 8. Evaluate the limit:

$$\lim_{x \to 0} \left(\frac{a^x + b^x + c^x}{3} \right)^{\frac{2}{x}} \quad ; (a, b, c > 0)$$

- (a) $a^2b^2c^2$
- (b) $(abc)^3$
- (c) $(abc)^{\frac{2}{3}}$
- (d) (a+b+c)/3
- 9. Evaluate the limit:

$$\lim_{x \to \infty} \frac{x^2 \sin \frac{1}{x} - x}{1 - |x|}$$

- (a) 0
- (b) 1
- (c) -1
- (d) $\frac{1}{2}$
- 10. Evaluate the limit:

$$\lim_{n \to \infty} \frac{1 + 2 + 3 + \dots + n}{n^2 + 100}$$

- (a) 1
- (b) $\frac{1}{2}$ (c) $\frac{1}{4}$
- (d) 0
- 11. Evaluate the limit:

$$\lim_{n \to \infty} \frac{1}{1 - n^2} + \frac{2}{1 - n^2} + \frac{3}{1 - n^2} + \dots + \frac{n}{1 - n^2}$$

- (a) $\frac{1}{2}$
- (b) $-\frac{1}{2}$
- (c) 1
- (d) -1
- 12. Evaluate the limit:

$$\lim_{x \to -\infty} \frac{x^4 \sin(\frac{1}{x}) + x^2}{1 + |x|^3}$$

- (a) 1
- (b) -1
- (c) 0

- (d) -2
- 13. Evaluate the limit:

$$\lim_{n \to \infty} \frac{1^2 + 2^2 + 3^2 + \dots + n^2}{n^3}$$

- (a) $\frac{1}{2}$
- (b) $\frac{1}{3}$
- (c) 1
- (d) 0

Integer Type Questions

14. Evaluate the value of a, b and c such that:

$$\lim_{x \to 0} \frac{ae^x - b\cos x + ce^{-x}}{x\sin x} = 2$$

Find the value of a + b + c.

15. Evaluate the limit:

$$\lim_{x \to \frac{\pi}{3}} \frac{\tan^3 x - 3\tan x}{\cos(x + \frac{\pi}{6})}$$

16. Find the value of k if the following holds:

$$\lim_{x \to 0} \frac{\log(a+x) - \log a}{x} + k \lim_{x \to e} \frac{\log x - 1}{x - e} = 1$$

Find the value of k/e in terms of a.

17. Let $f: R \to R$ be a differentiable function having f(2) = 6, $f'(2) = \frac{1}{48}$. Find the value of:

$$\lim_{x \to 2} \frac{\int_{6}^{f(x)} 4t^3 dt}{x - 2}$$

18. Evaluate the limit:

$$\lim_{x \to 3} \frac{\sqrt{1 - \cos(x^2 - 10x + 21)}}{(x - 3)}$$

Find the absolute value of the limit.