SET 4

- 1. If $a, b, c \in \{1, 2, 3, 4, 5\}$, the number of equations of the form $ax^2 + bx + c = 0$ which have real roots is
 - (a) 25
 - (b) 26
 - (c) 27
 - (d) 24
- 2. In the equation $x^3 + 3Hx + G = 0$, if G and H are real and $G^2 + 4H^3 > 0$ then the roots are
 - (a) all real and equal
 - (b) all real and distinct
 - (c) one real and two imaginary
 - (d) all real and two are equal
- 3. If [x] denotes the integral part of x and $k = \sin^{-1}\left(\frac{1+t^2}{2t}\right) > 0$ then the integral value of α for which the equation $(x-[k])(x+\alpha)-1=0$ has integral roots is
 - (a) 1
 - (b) 2
 - (c) 4
 - (d) none of these
- 4. True/False: The solution of $\log_{\frac{1}{3}}(2^{x+2}-4^x) \ge -2$ is $(-\infty,\infty)$
- 5. True/False: If $(\sqrt{2})^x + (\sqrt{3})^x = (\sqrt{13})^{x/2}$ then number of values of x is 4.
- 6. **True/False:** If 0 < x < 1000 and $\left[\frac{x}{2}\right] + \left[\frac{x}{3}\right] + \left[\frac{x}{5}\right] = \frac{31}{30}x$, the number of possible values of x is 30.
- 7. True/False: If $5^x + (2\sqrt{3})^{2x} \ge 13^x$ then the solution set is $(-\infty, 2]$
- 8. **True/False:** If $a, b, c \in \mathbb{R}$ and a+b+c=0, then the quadratic equation $4ax^2+3bx+2c=0$ has real roots.
- 9. Fill in the blank: The polynomial $x^3 3x^2 9x + c$ can be written as $(x \alpha)^2(x \beta)$ if $c = \dots$
- 10. Fill in the blank: If α , β are roots of $x^2 + px q = 0$ and γ , δ are roots of $x^2 + px + r = 0$ then $(\alpha \gamma)(\alpha \delta) = \dots$
- 11. **Fill in the blank:** If $y \neq 0$ then the number of values of the pair (x,y) such that $x+y+\frac{x}{y}=\frac{1}{2}$ and $(x+y)\frac{x}{y}=-\frac{1}{2}$ is _____
- 12. **Fill in the blank:** The value of α for which the equation $x^2 (\sin \alpha 2)x (1 + \sin \alpha) = 0$ has roots whose sum of squares is least is _____

- 13. Fill in the blank: If the equations $x^2 5x + 6 = 0$ and $x^2 + mx + 3 = 0$ have a common root, then m =_____
- 14. Multiple Correct Choice: If $px^2 + qx + r = 0$ and $rx^2 + qx + p = 0$ have a common non-real root, then
 - (a) -2|p| < q < 2|p|
 - (b) -2|r| < |q| < 2|r|
 - (c) $p = \pm r$
 - (d) p = r
- 15. Multiple Correct Choice: If exactly one root of $x^2 (t-1)x + t(t+4) = 0$ lies between the roots of $x^2 (t+3)x + t + 2 = 0$ then
 - (a) $t \in (-6, -3)$
 - (b) (3,6)
 - (c) $t \in [-3, 1)$
 - (d) [1,6)