SET 3

- 1. If α and β are roots of $y^2 + py + q = 0$ and also $y^{2n} + p^n y^n + q^n = 0$ and if $\frac{\alpha}{\beta}$ and $\frac{\beta}{\alpha}$ are the roots of the $y^n + 1 + (y+1)^n = 0$ then n must be
 - (a) an integer
 - (b) a natural number
 - (c) an even integer
 - (d) an odd integer.
- 2. Given a,b,c are real numbers. If α is a root of $a^2y^2 + by + c = 0$ and β is a root of $a^2y^2 by c = 0$ where $0 < \alpha < \beta$, then one root of $a^2y^2 + 2by + 2c = 0$ is γ such that
 - (a) $\gamma < \alpha < \beta$
 - (b) $\gamma < 0 < \alpha < \beta$
 - (c) $\alpha < \beta < \gamma$
 - (d) $\alpha < \gamma < \beta$
- 3. If α, β be the roots of $x^2 px + q = 0$ and α', β' be the roots of $x^2 p'x + q' = 0$ then the value of $(\alpha \alpha')^2 + (\beta \alpha')^2 + (\alpha \beta')^2 + (\beta \beta')^2$ is
 - (a) $2\{p^2 2q + p'^2 2q' pp'\}$
 - (b) $2\{p^2 2q + p'^2 2q' + qq'\}$
 - (c) $2\{p^2 2q p'^2 2q' + pp'\}$
 - (d) $2\{p^2 2q p'^2 2q' qq'\}$
- 4. If the roots of the equation $(a-1)(x^2+x+1)^2=(a+1)(x^4+x^2+1)$ are real and distinct then the value of $a \in$
 - (a) $(-\infty, 3]$
 - (b) $(-\infty, -2) \cup (2, \infty)$
 - -2,2
 - (c) $[-3, \infty)$
- 5. If the roots of the equation $ax^2 bx + c = 0$ are α, β then the roots of the equation $b^2cx^2 ab^2x + a^3 = 0$ are
 - (a) $\frac{1}{\alpha^3 + \alpha\beta}$, $\frac{1}{\beta^3 + \alpha\beta}$
 - (b) $\frac{1}{\alpha^2 + \alpha\beta}$, $\frac{1}{\beta^2 + \alpha\beta}$
 - (c) $\frac{1}{\alpha^4 + \alpha\beta}$, $\frac{1}{\beta^4 + \alpha\beta}$
 - (d) none of these
- 6. If α, β are the roots of the equation $x^2 ax + b = 0$ and $A_n = \alpha^n + \beta^n$, then which of the following is true?

- (a) $A_{n+1} = aA_n + bA_{n-1}$
- (b) $A_{n+1} = bA_n + aA_{n-1}$
- (c) $A_{n+1} = aA_n bA_{n-1}$
- (d) $A_{n+1} = bA_n aA_{n-1}$
- 7. Number of values of b for which equations $x^3 + bx + 1 = 0$ and $x^4 + bx^2 + 1 = 0$ have a common root
 - (a) 0
 - (b) 1
 - (c) 2
 - (d) infinite.
- 8. Total number of integral values of a so that $x^2 (a+1)x + a 1 = 0$ has integral roots is equal to
 - (a) 1
 - (b) 2
 - (c) 4
 - (d) none of these
- 9. If the equation $x^2 + ax + b = 0$ has distinct real roots and $x^2 + a|x| + b = 0$ has only one real root, then which of the following is true.
 - (a) b = 0, a > 0
 - (b) b = 0, a < 0
 - (c) b > 0, a < 0
 - (d) b < 0, a > 0
- 10. If the equation $|x^2 + bx + c| = k$ has four real roots then
 - (a) $b^2 4c > 0$ and $0 < k < \frac{4c b^2}{4}$
 - (b) $b^2 4c < 0$ and $0 < k < \frac{4c b^2}{4}$
 - (c) $b^2 4c > 0$ and $0 < k > \frac{4c b^2}{4}$
 - (d) none of these
- 11. If a,b,c ,d $\in R$ then the equation $(x^2 + ax 3b)(x^2 cx + b)(x^2 dx + 2b) = 0$ has
 - (a) 6 real roots
 - (b) 3 real roots
 - (c) 4 real roots
 - (d) at least 2 real roots.
- 12. Let α, β be the real and distinct roots of the equation $ax^2 + bx + c = |c|, (a > 0, c \neq 0)$ p, q be the real and distinct roots of the equation $ax^2 + bx + c = 0$. Then

- (a) p and q lie between α, β
- (b) p and q do not lie between α, β
- (c) Only p lies between α and β
- (d) Only q lies between α and β
- 13. Let $f(x) = ax^2 + bx + c$ and f(-1) < 1, f(1) > -1, f(3) < -4, and $a \neq 0$, then
 - (a) a > 0
 - (b) a < 0
 - (c) sign of a can not be determined
 - (d) b > 0
- 14. A point (α, α^2) lies inside the triangle formed by the coordinate axes and the line x+y=6. If α is a root of $f(x) = x^2 + ax + b = 0$ then which of the following is always true?
 - (a) f(0) > 0
 - (b) f(2) > 0
 - (c) $f(\beta) \leq 0$ for at least one $\beta \in (0,2)$
 - (d) -4 < a < 0