
SOLUTIONS FOR SET 3

1. Question: If α and β are roots of y2 + py + q = 0 and also y2n + pnyn + qn = 0 and if α

β
and β

α
are the roots of

the yn + 1 + (y + 1)n = 0 then n must be
Solution:

(i) Since α and β are common roots of y2 + py + q = 0 and y2n + pnyn + qn = 0, as shown in a previous problem
(Set 2, Q10), αn and βn must be the roots of z2 + pnz + qn = 0. Thus, αn + βn = −pn and αnβn = qn.

(ii) Let the roots of the third equation be y1 = α

β
and y2 = β

α
. The equation is yn + 1 + (y + 1)n = 0.

(iii) Substitute y1 = α

β
: (

α

β

)n

+ 1 +
(

α

β
+ 1

)n

= 0

αn

βn
+ 1 +

(
α + β

β

)n

= 0

Multiply by βn:
αn + βn + (α + β)n = 0

(iv) From y2 + py + q = 0, we have α + β = −p. Substitute this and the result from (i):

(−pn) + (−p)n = 0

(−pn) + (−1)npn = 0

pn[(−1) + (−1)n] = 0

(v) Since p ̸= 0, we must have:
−1 + (−1)n = 0 =⇒ (−1)n = 1

This condition is only satisfied if n is an **even integer**.

(vi) Check for the second root y2 = β

α
: (

β

α

)n

+ 1 +
(

β

α
+ 1

)n

= 0

Multiply by αn:
βn + αn + (β + α)n = 0

This leads to the same condition, n is an even integer.

Answer: (c) an even integer

2. Question: Given a,b,c are real numbers. If α is a root of a2y2 + by + c = 0 and β is a root of a2y2 − by − c = 0
where 0 < α < β, then one root of a2y2 + 2by + 2c = 0 is γ such that
Solution: Let f1(y) = a2y2 + by + c and f2(y) = a2y2 − by − c. Let g(y) = a2y2 + 2by + 2c. We are looking for γ,
a root of g(y) = 0.

(i) Relate the polynomials: g(y) can be expressed as a linear combination of f1(y) and f2(y):

g(y) = 2f1(y) − f2(y) − (a2y2 + 2c)

A simpler relation using α and β: Since α is a root of f1(y) = 0:

a2α2 + bα + c = 0 =⇒ bα + c = −a2α2

Since β is a root of f2(y) = 0:
a2β2 − bβ − c = 0 =⇒ bβ + c = a2β2

(ii) Evaluate g(y) at y = α and y = β:

g(α) = a2α2 + 2bα + 2c = a2α2 + 2(bα + c)

Substitute bα + c = −a2α2:
g(α) = a2α2 + 2(−a2α2) = −a2α2

Since a2 > 0 and α ̸= 0 (because 0 < α < β):
g(α) < 0
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(iii) Evaluate g(β):
g(β) = a2β2 + 2bβ + 2c = a2β2 + 2(bβ + c)

From bβ + c = a2β2 − 2c, no. Substitute bβ = a2β2 − c.

g(β) = a2β2 + 2(a2β2 − c) + 2c = a2β2 + 2a2β2 − 2c + 2c = 3a2β2

Since a2 > 0 and β ̸= 0:
g(β) > 0

(iv) Conclusion: Since g(y) is a continuous function and g(α) < 0 and g(β) > 0, by the Intermediate Value
Theorem, there must be at least one root γ of g(y) = 0 between α and β.

α < γ < β

(The equation g(y) = 0 is quadratic, so it has at most two roots. One root γ is guaranteed to be in (α, β)).

Answer: (d) α < γ < β

3. Question: If α, β be the roots of x2 − px + q = 0 and α′, β′ be the roots of x2 − p′x + q′ = 0 then the value of
(α − α′)2 + (β − α′)2 + (α − β′)2 + (β − β′)2 is
Solution:

(i) From x2 − px + q = 0:
α + β = p and αβ = q

(α + β)2 = p2 =⇒ α2 + β2 = p2 − 2q

(ii) From x2 − p′x + q′ = 0:
α′ + β′ = p′ and α′β′ = q′

(α′ + β′)2 = p′2 =⇒ α′2 + β′2 = p′2 − 2q′

(iii) Let E be the expression:
E = (α − α′)2 + (β − α′)2 + (α − β′)2 + (β − β′)2

Expand the squared terms:

E = (α2 − 2αα′ + α′2) + (β2 − 2βα′ + α′2) + (α2 − 2αβ′ + β′2) + (β2 − 2ββ′ + β′2)
= 2(α2 + β2) + 2(α′2 + β′2) − 2α′(α + β) − 2β′(α + β)

(iv) Factor the last two terms:

E = 2(α2 + β2) + 2(α′2 + β′2) − 2(α + β)(α′ + β′)

(v) Substitute the values from (i) and (ii):

E = 2(p2 − 2q) + 2(p′2 − 2q′) − 2(p)(p′)

E = 2p2 − 4q + 2p′2 − 4q′ − 2pp′

E = 2{p2 − 2q + p′2 − 2q′ − pp′}

This matches option (a) when factoring out the 2.

Answer: (a) 2{p2 − 2q + p′2 − 2q′ − pp′}

4. Question: If the roots of the equation (a − 1)(x2 + x + 1)2 = (a + 1)(x4 + x2 + 1) are real and distinct then the
value of a ∈
Solution:

(i) Use the identity: x4 + x2 + 1 = (x2 + x + 1)(x2 − x + 1).
(ii) The equation becomes:

(a − 1)(x2 + x + 1)2 = (a + 1)(x2 + x + 1)(x2 − x + 1)

(iii) Since x2 + x + 1 = (x + 1/2)2 + 3/4 > 0 for all real x, we can divide by x2 + x + 1:

(a − 1)(x2 + x + 1) = (a + 1)(x2 − x + 1)
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(iv) Expand and rearrange to form a quadratic equation Ax2 + Bx + C = 0:

(a − 1)x2 + (a − 1)x + (a − 1) = (a + 1)x2 − (a + 1)x + (a + 1)

0 = [(a + 1) − (a − 1)]x2 + [−(a + 1) − (a − 1)]x + [(a + 1) − (a − 1)]

0 = 2x2 + (−2a)x + 2

x2 − ax + 1 = 0

(v) The roots of this quadratic equation are real and distinct if the discriminant D > 0.

D = (−a)2 − 4(1)(1) = a2 − 4

(vi) Set D > 0:
a2 − 4 > 0 =⇒ (a − 2)(a + 2) > 0

The inequality is satisfied when a is outside the roots of a2 − 4 = 0:

a ∈ (−∞, −2) ∪ (2, ∞)

(vii) We must also check the case where the factor x2 + x + 1 = 0 was divided out. Since x2 + x + 1 has no real
roots, this division does not lose any real roots.

Answer: (b) (−∞, −2) ∪ (2, ∞)

5. Question: If the roots of the equation ax2 −bx+c = 0 are α, β then the roots of the equation b2cx2 −ab2x+a3 = 0
are
Solution:

(i) From ax2 − bx + c = 0:
α + β = b

a
and αβ = c

a

(ii) Consider the second equation b2cx2 −ab2x+a3 = 0. If x0 is a root of this equation, then b2cx2
0 −ab2x0 +a3 = 0.

(iii) We use the substitution method. Let the new root be y. The relation x = g(y) is needed. Let’s look at the
reciprocals of the original roots: 1/α, 1/β. They satisfy cx2 − bx + a = 0.

(iv) Rearrange the second equation: Divide by b2c:

x2 − a

c
x + a3

b2c
= 0

Using the relations b/a = α + β and c/a = αβ:

a

c
= 1

αβ
and b2 = a2(α + β)2

The second equation is:

x2 − 1
αβ

x + a3

a2(α + β)2c
= 0

x2 − 1
αβ

x + a

c(α + β)2 = 0

Since c/a = αβ, a/c = 1/αβ:
x2 − 1

αβ
x + 1

(αβ)2(α + β)2
1

αβ
= 0

This approach seems complicated.
(v) Alternative approach (Testing options): Let the new roots be y1, y2. Check if y1 and y2 satisfy the

original equation ax2 − bx + c = 0 if we substitute x = h(y). Let the new roots be y1 = 1
α3 + αβ

and

y2 = 1
β3 + αβ

. The term α3 + αβ = α(α2 + β). Since α is a root of ax2 − bx + c = 0:

aα2 − bα + c = 0 =⇒ α2 = bα − c

a
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(vi) Let’s check the transformed root form. A common transformation is y = 1
xk

. Let x = 1/y. Substitute x = 1/y

into the second equation: b2c(1/y)2 − ab2(1/y) + a3 = 0.

b2c − ab2y + a3y2 = 0 =⇒ a3y2 − ab2y + b2c = 0

This equation has roots 1/α, 1/β if a = b2 and b = ab2/a3 and c = b2c/a3. No.

Let’s look at the roots of a3y2 − ab2y + b2c = 0. Sum of roots: S = ab2

a3 = b2

a2 . Product of roots: P = b2c

a3 .

If the roots are 1/α2 and 1/β2:

S = 1
α2 + 1

β2 = α2 + β2

(αβ)2 = (α + β)2 − 2αβ

(αβ)2 = (b/a)2 − 2c/a

(c/a)2 = b2/a2 − 2ac/a2

c2/a2 = b2 − 2ac

c2

This is not b2/a2.

The term in option (b) is 1
α2 + αβ

and 1
β2 + αβ

.

α2 + αβ = α(α + β) = α(b/a)

β2 + αβ = β(β + α) = β(b/a)

New roots are y1 = 1
α(b/a) = a

bα
and y2 = a

bβ
.

S′ = a

b

(
1
α

+ 1
β

)
= a

b

(
α + β

αβ

)
= a

b

(
b/a

c/a

)
= a

b
· b

c
= a

c

P ′ = a2

b2αβ
= a2

b2(c/a) = a3

b2c

The new equation is x2 − S′x + P ′ = 0:

x2 − a

c
x + a3

b2c
= 0

Multiply by b2c:
b2cx2 − ab2x + a3 = 0

This is exactly the second equation.

Answer: (b) 1
α2 + αβ

,
1

β2 + αβ

6. Question: If α, β are the roots of the equation x2 − ax + b = 0 and An = αn + βn, then which of the following is
true?
Solution: This is a relationship based on the roots of a quadratic equation, known as a recurrence relation.

(i) Since α is a root of x2 − ax + b = 0:

α2 − aα + b = 0 =⇒ α2 = aα − b

(ii) Multiply by αn−1:
αn+1 = aαn − bαn−1

(iii) Similarly, since β is a root:
βn+1 = aβn − bβn−1

(iv) Add the two equations:
αn+1 + βn+1 = a(αn + βn) − b(αn−1 + βn−1)

(v) Substitute Ak = αk + βk:
An+1 = aAn − bAn−1

Answer: (c) An+1 = aAn − bAn−1

Question: Number of values of b for which equations x3 + bx + 1 = 0 and x4 + bx2 + 1 = 0 have a common root
Solution: Let k be the common root.

k3 + bk + 1 = 0 (1)
k4 + bk2 + 1 = 0 (2)
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(i) Multiply equation (1) by k:
k(k3 + bk + 1) = k4 + bk2 + k = 0

(ii) Substitute k4 + bk2 = −1 from equation (2) into the result from (i):

−1 + k = 0 =⇒ k = 1

(iii) The only possible common root is k = 1. We must check if k = 1 satisfies both original equations for some
value of b.

(iv) Substitute k = 1 into equation (1):

(1)3 + b(1) + 1 = 0 =⇒ 1 + b + 1 = 0 =⇒ b = −2

(v) Check k = 1 and b = −2 in equation (2):

(1)4 + (−2)(1)2 + 1 = 1 − 2 + 1 = 0

Since k = 1 satisfies both equations when b = −2, the equations have a common root when b = −2.
(vi) Thus, there is exactly **one** value of b for which the equations have a common root.

Answer: (b) 1

8. Question: Total number of integral values of a so that x2 − (a + 1)x + a − 1 = 0 has integral roots is equal to
Solution: Let α and β be the integral roots of x2 − (a + 1)x + a − 1 = 0.

(i) By Vieta’s formulas:
α + β = a + 1

αβ = a − 1

(ii) Eliminate a from the two equations:
a = α + β − 1

αβ = (α + β − 1) − 1

αβ = α + β − 2

(iii) Rearrange the expression to factor:
αβ − α − β + 2 = 0

Add 1 to both sides to complete the factoring pattern αβ − α − β + 1 = (α − 1)(β − 1):

αβ − α − β + 1 = −1

(α − 1)(β − 1) = −1

(iv) Since α and β are integral roots, α − 1 and β − 1 must be integers. The only pairs of integers whose product
is −1 are (1, −1) and (−1, 1).

(v) Case 1: α − 1 = 1 and β − 1 = −1.
α = 2 and β = 0

Calculate a using a = α + β − 1:
a = 2 + 0 − 1 = 1

(vi) Case 2: α − 1 = −1 and β − 1 = 1.
α = 0 and β = 2

Calculate a using a = α + β − 1:
a = 0 + 2 − 1 = 1

(vii) There is only **one** distinct integral value of a, which is a = 1.

Answer: (a) 1

9. Question: If the equation x2 + ax + b = 0 has distinct real roots and x2 + a|x| + b = 0 has only one real root, then
which of the following is true.
Solution: Let f(x) = x2 + ax + b and g(x) = x2 + a|x| + b.

(i) f(x) = 0 has **distinct real roots** =⇒ D = a2 − 4b > 0.
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(ii) g(x) = 0 has **only one real root**. Since g(x) is an even function, if x = r is a root, then x = −r is also a
root (unless r = 0). If r ̸= 0 is a root, then g(x) has at least two roots (±r), which contradicts having only
one real root. Therefore, the only possible real root must be x = 0.

(iii) Substitute x = 0 into g(x) = 0:
(0)2 + a|0| + b = 0 =⇒ b = 0

(iv) Since b = 0, the first equation becomes x2 + ax = 0 =⇒ x(x + a) = 0. The roots are x = 0 and x = −a.
(v) f(x) = 0 must have distinct real roots.

• If a = 0, the roots are x = 0, 0 (not distinct).
• If a ̸= 0, the roots 0 and −a are distinct.

So, we must have a ̸= 0.
(vi) Check the second equation with b = 0: x2 + a|x| = 0 =⇒ |x|(|x| + a) = 0. The solutions are:

• |x| = 0 =⇒ x = 0 (one root).
• |x| + a = 0 =⇒ |x| = −a.

For |x| = −a to have solutions, we must have −a ≥ 0, or a ≤ 0.
(vii) If a < 0, then |x| = −a has two roots x = ±(−a) = ∓a, which are ̸= 0. This would mean g(x) = 0 has three

roots (0, −a, a), contradicting ”only one real root”.
(viii) Therefore, the only way g(x) = 0 has only one real root (x = 0) is if |x| + a = 0 has NO solutions for x ̸= 0.

This requires |x| = −a to have no positive solutions for |x|.

|x| = −a

If −a > 0 =⇒ a < 0, then |x| = −a has two distinct non-zero roots, ±(−a). If −a = 0 =⇒ a = 0, then
|x| = 0, root is x = 0. If −a < 0 =⇒ a > 0, then |x| = −a has no real roots.

(ix) Combining the required conditions:
• b = 0.
• a ̸= 0 (for f(x) = 0 to have distinct roots).
• a > 0 (for g(x) = 0 to have only one root x = 0).

(x) The combined condition is b = 0, a > 0.

Answer: (a) b = 0, a > 0

10. Question: If the equation |x2 + bx + c| = k has four real roots then
Solution: Let f(x) = x2 + bx + c. The equation |f(x)| = k has four distinct real roots if the graph of y = |f(x)|
intersects the horizontal line y = k at four distinct points.

(i) f(x) = x2 + bx + c is a parabola opening upwards. Its vertex is at xv = −b/2.

(ii) The minimum value of f(x) is f(xv) = (− b

2)2 + b(− b

2) + c = b2

4 − b2

2 + c = c − b2

4 . Let m = f(xv) = 4c − b2

4 .

(iii) For the graph of y = |f(x)| to have a ”V-shape” or ”W-shape” near the vertex, the original parabola f(x)
must cross the x-axis, i.e., f(x) = 0 must have two distinct real roots.

D = b2 − 4c > 0 =⇒ b2 − 4c > 0

This means the minimum value m must be negative: m = c − b2/4 < 0. The graph dips below the x-axis.
(iv) The graph of y = |f(x)| is obtained by reflecting the part of f(x) below the x-axis. The maximum value of

|f(x)| near the vertex is |m| =
∣∣∣∣c − b2

4

∣∣∣∣ = −
(

c − b2

4

)
= b2

4 − c = b2 − 4c

4 .

(v) For the line y = k to intersect y = |f(x)| at four distinct points, k must be positive and must be less than the
height of the reflected ”hump” below the x-axis.

0 < k < |m|

0 < k <
b2 − 4c

4

(vi) Recheck the options: Option (a) has 0 < k <
4c − b2

4 . Since b2 − 4c > 0, we have 4c − b2 < 0. The upper

bound for k cannot be negative. The correct upper bound is b2 − 4c

4 . The option (a) must have a typo and

intended b2 − 4c

4 . We select (a) as the intended option but note the sign error.
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Answer: (a) b2 − 4c > 0 and 0 < k <
4c − b2

4 (with the assumption that the upper bound should be b2 − 4c

4 )

11. Question: If a,b,c ,d ∈ R then the equation (x2 + ax − 3b)(x2 − cx + b)(x2 − dx + 2b) = 0 has
Solution: The equation is Q1(x)Q2(x)Q3(x) = 0. The overall equation has real roots if at least one of the quadratic
factors has a non-negative discriminant.

(i) Calculate the discriminants Di for each quadratic factor:

D1 = a2 − 4(1)(−3b) = a2 + 12b

D2 = (−c)2 − 4(1)(b) = c2 − 4b

D3 = (−d)2 − 4(1)(2b) = d2 − 8b

(ii) The equation has NO real roots if D1 < 0 AND D2 < 0 AND D3 < 0.
(iii) Assume, for contradiction, that there are no real roots (i.e., all Di < 0).

• D2 < 0 =⇒ c2 < 4b

• D3 < 0 =⇒ d2 < 8b

Both conditions imply that b must be positive, b > 0.
(iv) Now check D1 with b > 0:

D1 = a2 + 12b

Since a2 ≥ 0 and b > 0, we have D1 = a2 + 12b > 0.
(v) Contradiction: If D2 < 0 and D3 < 0, then D1 must be positive.
(vi) Therefore, it is impossible for all three discriminants to be simultaneously negative. Since D1 > 0 for all a, c, d

whenever D2 < 0 and D3 < 0, the first quadratic Q1(x) must have D1 > 0 if b > 0 and thus has two real
roots. If b ≤ 0, then D1 = a2 + 12b may be ≥ 0 (if a2 ≥ −12b) or D3 = d2 − 8b will be ≥ 0.

(vii) If b < 0, D3 = d2 − 8b > 0, so Q3(x) has two real roots.
(viii) In all cases, at least one discriminant is non-negative, meaning the overall equation has **at least two real

roots**.

Answer: (d) at least 2 real roots.

12. Question: Let α, β be the real and distinct roots of the equation ax2 + bx + c = |c|, (a > 0, c ̸= 0) p, q be the real
and distinct roots of the equation ax2 + bx + c = 0. Then
Solution: Let f(x) = ax2 + bx + c.

• The roots of f(x) = |c| are α, β.
• The roots of f(x) = 0 are p, q.

The coefficient a > 0, so the parabola opens upward.

(i) Since p, q are the roots of f(x) = 0, we have f(p) = 0 and f(q) = 0.
(ii) α, β are the roots of f(x) = |c|. Assume α < β.
(iii) Since c ̸= 0, |c| > 0. The roots p, q are the points where the parabola intersects the line y = 0. The roots α, β

are the points where the parabola intersects the line y = |c|.
(iv) Since the parabola opens upward (a > 0), and the line y = |c| is above the line y = 0, the roots of f(x) = |c|

must be ”further apart” than the roots of f(x) = 0.
(v) Visualizing the graphs :

f(α) = |c| and f(β) = |c|

Since f(p) = 0 and f(q) = 0 and |c| > 0, the value of f(x) increases as x moves away from the axis of symmetry.
(vi) Therefore, p and q must lie between α and β.

α < p < q < β or α < q < p < β

Answer: (a) p and q lie between α, β

13. Question: Let f(x) = ax2 + bx + c and f(−1) < 1, f(1) > −1, f(3) < −4, and a ̸= 0, then
Solution: We use the given inequalities to find the sign of a.
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(i) Given inequalities:

f(−1) = a − b + c < 1 =⇒ a − b + c − 1 < 0 (Eq. 1)
f(1) = a + b + c > −1 =⇒ a + b + c + 1 > 0 (Eq. 2)
f(3) = 9a + 3b + c < −4 =⇒ 9a + 3b + c + 4 < 0 (Eq. 3)

(ii) Combine (Eq. 2) and (Eq. 1): Subtracting (Eq. 1) from (Eq. 2):

(a + b + c) − (a − b + c) > −1 − 1

2b > −2 =⇒ b > −1

(iii) Combine (Eq. 2) and (Eq. 3) to eliminate b: Multiply (Eq. 2) by 3: 3(a+b+c) > −3 =⇒ 3a+3b+3c >
−3. Subtract this from (Eq. 3):

(9a + 3b + c) − (3a + 3b + 3c) < −4 − (−3)

6a − 2c < −1 =⇒ 2c > 6a + 1

(iv) Combine (Eq. 1) and (Eq. 3) to eliminate b: Multiply (Eq. 1) by 3: 3(a−b+c) < 3 =⇒ 3a−3b+3c < 3.
Add this to (Eq. 3):

(9a + 3b + c) + (3a − 3b + 3c) < −4 + 3
12a + 4c < −1

(v) Substitute 2c > 6a + 1 from (iii) into 12a + 4c < −1. 4c > 12a + 2.

12a + (12a + 2) < −1

24a + 2 < −1
24a < −3

a < − 3
24 =⇒ a < −1

8
(vi) Since a < 0, the parabola opens **downward**.

Answer: (b) a< 0

14. Question: A point (α, α2) lies inside the triangle formed by the coordinate axes and the line x + y = 6. If α is a
root of f(x) = x2 + ax + b = 0 then which of the following is always true?
Solution:

(i) The triangle is defined by x ≥ 0, y ≥ 0, and x + y ≤ 6.
(ii) The point (α, α2) lies inside the triangle, so it must satisfy the boundary conditions strictly:

• x > 0 =⇒ α > 0
• y > 0 =⇒ α2 > 0 (This is true since α > 0)
• x + y < 6 =⇒ α + α2 < 6

(iii) Solve the inequality α2 + α − 6 < 0:
(α + 3)(α − 2) < 0

The roots are −3 and 2. For the inequality to be true, α must lie between the roots: −3 < α < 2.
(iv) Combining the conditions from (ii) and (iii): 0 < α < 2.
(v) α is a root of f(x) = x2 + ax + b = 0. The existence of this root α ∈ (0, 2) implies that the quadratic function

f(x) changes sign or touches the x-axis in the interval (0, 2).
(vi) Evaluate the options using the knowledge that f(α) = 0 for some α ∈ (0, 2):

• (a) f(0) = b. f(0) could be positive or negative. For example, if roots are 0.5 and 1.5, f(x) = (x−0.5)(x−
1.5) = x2 − 2x + 0.75, f(0) = 0.75 > 0. If roots are α ∈ (0, 2) and β > 2, f(0) = αβ > 0. If roots are
α ∈ (0, 2) and β < 0, f(0) = αβ < 0. f(0) > 0 is not always true.

• (b) f(2) = 4 + 2a + b. If α is the only root in (0, 2), f(x) must change sign at α. If f(x) opens up (or
down), f(0) and f(2) could have the same or opposite signs. Not always true.

• (c) f(β) ≤ 0 for at least one β ∈ (0, 2). Since α is a root and α ∈ (0, 2), f(α) = 0. If we choose β = α,
then f(β) = f(α) = 0. Since 0 ≤ 0, the statement f(β) ≤ 0 for at least one β ∈ (0, 2) is always true (by
choosing β = α).

(vii) The other options are not always true. For example, f(0) = b = αβ. If β ∈ (0, 2), f(0) > 0. If β is a large
negative number, f(0) < 0.

Answer: (c) f(β) ≤ 0 for atleast one β ∈ (0, 2)
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