## **SOLUTIONS FOR SET 3**

1. Question: If  $\alpha$  and  $\beta$  are roots of  $y^2 + py + q = 0$  and also  $y^{2n} + p^n y^n + q^n = 0$  and if  $\frac{\alpha}{\beta}$  and  $\frac{\beta}{\alpha}$  are the roots of the  $y^n + 1 + (y+1)^n = 0$  then n must be

Solution:

- (i) Since  $\alpha$  and  $\beta$  are common roots of  $y^2 + py + q = 0$  and  $y^{2n} + p^n y^n + q^n = 0$ , as shown in a previous problem (Set 2, Q10),  $\alpha^n$  and  $\beta^n$  must be the roots of  $z^2 + p^n z + q^n = 0$ . Thus,  $\alpha^n + \beta^n = -p^n$  and  $\alpha^n \beta^n = q^n$ .
- (ii) Let the roots of the third equation be  $y_1 = \frac{\alpha}{\beta}$  and  $y_2 = \frac{\beta}{\alpha}$ . The equation is  $y^n + 1 + (y+1)^n = 0$ .
- (iii) Substitute  $y_1 = \frac{\alpha}{\beta}$ :

$$\left(\frac{\alpha}{\beta}\right)^n + 1 + \left(\frac{\alpha}{\beta} + 1\right)^n = 0$$

$$\frac{\alpha^n}{\beta^n} + 1 + \left(\frac{\alpha + \beta}{\beta}\right)^n = 0$$

Multiply by  $\beta^n$ :

$$\alpha^n + \beta^n + (\alpha + \beta)^n = 0$$

(iv) From  $y^2 + py + q = 0$ , we have  $\alpha + \beta = -p$ . Substitute this and the result from (i):

$$(-p^n) + (-p)^n = 0$$

$$(-p^n) + (-1)^n p^n = 0$$

$$p^{n}[(-1) + (-1)^{n}] = 0$$

(v) Since  $p \neq 0$ , we must have:

$$-1 + (-1)^n = 0 \implies (-1)^n = 1$$

This condition is only satisfied if n is an \*\*even integer\*\*.

(vi) Check for the second root  $y_2 = \frac{\beta}{\alpha}$ :

$$\left(\frac{\beta}{\alpha}\right)^n + 1 + \left(\frac{\beta}{\alpha} + 1\right)^n = 0$$

Multiply by  $\alpha^n$ :

$$\beta^n + \alpha^n + (\beta + \alpha)^n = 0$$

This leads to the same condition, n is an even integer.

**Answer:** (c) an even integer

2. **Question:** Given a,b,c are real numbers. If  $\alpha$  is a root of  $a^2y^2 + by + c = 0$  and  $\beta$  is a root of  $a^2y^2 - by - c = 0$  where  $0 < \alpha < \beta$ , then one root of  $a^2y^2 + 2by + 2c = 0$  is  $\gamma$  such that

**Solution:** Let  $f_1(y) = a^2y^2 + by + c$  and  $f_2(y) = a^2y^2 - by - c$ . Let  $g(y) = a^2y^2 + 2by + 2c$ . We are looking for  $\gamma$ , a root of g(y) = 0.

(i) Relate the polynomials: g(y) can be expressed as a linear combination of  $f_1(y)$  and  $f_2(y)$ :

$$q(y) = 2f_1(y) - f_2(y) - (a^2y^2 + 2c)$$

A simpler relation using  $\alpha$  and  $\beta$ : Since  $\alpha$  is a root of  $f_1(y) = 0$ :

$$a^2\alpha^2 + b\alpha + c = 0 \implies b\alpha + c = -a^2\alpha^2$$

Since  $\beta$  is a root of  $f_2(y) = 0$ :

$$a^2\beta^2 - b\beta - c = 0 \implies b\beta + c = a^2\beta^2$$

(ii) Evaluate g(y) at  $y = \alpha$  and  $y = \beta$ :

$$a(\alpha) = a^2 \alpha^2 + 2b\alpha + 2c = a^2 \alpha^2 + 2(b\alpha + c)$$

Substitute  $b\alpha + c = -a^2\alpha^2$ :

$$q(\alpha) = a^2 \alpha^2 + 2(-a^2 \alpha^2) = -a^2 \alpha^2$$

Since  $a^2 > 0$  and  $\alpha \neq 0$  (because  $0 < \alpha < \beta$ ):

$$\mathbf{g}(\alpha) < \mathbf{0}$$

(iii) Evaluate  $g(\beta)$ :

$$q(\beta) = a^2 \beta^2 + 2b\beta + 2c = a^2 \beta^2 + 2(b\beta + c)$$

From  $b\beta + c = a^2\beta^2 - 2c$ , no. Substitute  $b\beta = a^2\beta^2 - c$ .

$$g(\beta) = a^2 \beta^2 + 2(a^2 \beta^2 - c) + 2c = a^2 \beta^2 + 2a^2 \beta^2 - 2c + 2c = 3a^2 \beta^2$$

Since  $a^2 > 0$  and  $\beta \neq 0$ :

$$\mathbf{g}(\beta) > \mathbf{0}$$

(iv) Conclusion: Since g(y) is a continuous function and  $g(\alpha) < 0$  and  $g(\beta) > 0$ , by the Intermediate Value Theorem, there must be at least one root  $\gamma$  of g(y) = 0 between  $\alpha$  and  $\beta$ .

$$\alpha < \gamma < \beta$$

(The equation g(y) = 0 is quadratic, so it has at most two roots. One root  $\gamma$  is guaranteed to be in  $(\alpha, \beta)$ ).

**Answer:** (d)  $\alpha < \gamma < \beta$ 

3. Question: If  $\alpha, \beta$  be the roots of  $x^2 - px + q = 0$  and  $\alpha', \beta'$  be the roots of  $x^2 - p'x + q' = 0$  then the value of  $(\alpha - \alpha')^2 + (\beta - \alpha')^2 + (\alpha - \beta')^2 + (\beta - \beta')^2$  is

Solution:

(i) From  $x^2 - px + q = 0$ :

$$\alpha + \beta = p$$
 and  $\alpha \beta = q$   
 $(\alpha + \beta)^2 = p^2 \implies \alpha^2 + \beta^2 = p^2 - 2q$ 

(ii) From  $x^2 - p'x + q' = 0$ :

$$\alpha' + \beta' = p' \quad \text{and} \quad \alpha'\beta' = q'$$
$$(\alpha' + \beta')^2 = p'^2 \implies \alpha'^2 + \beta'^2 = p'^2 - 2q'$$

(iii) Let E be the expression:

$$E = (\alpha - \alpha')^{2} + (\beta - \alpha')^{2} + (\alpha - \beta')^{2} + (\beta - \beta')^{2}$$

Expand the squared terms:

$$E = (\alpha^2 - 2\alpha\alpha' + \alpha'^2) + (\beta^2 - 2\beta\alpha' + \alpha'^2) + (\alpha^2 - 2\alpha\beta' + \beta'^2) + (\beta^2 - 2\beta\beta' + \beta'^2)$$
$$= 2(\alpha^2 + \beta^2) + 2(\alpha'^2 + \beta'^2) - 2\alpha'(\alpha + \beta) - 2\beta'(\alpha + \beta)$$

(iv) Factor the last two terms:

$$E = 2(\alpha^{2} + \beta^{2}) + 2(\alpha'^{2} + \beta'^{2}) - 2(\alpha + \beta)(\alpha' + \beta')$$

(v) Substitute the values from (i) and (ii):

$$E = 2(p^{2} - 2q) + 2(p'^{2} - 2q') - 2(p)(p')$$

$$E = 2p^{2} - 4q + 2p'^{2} - 4q' - 2pp'$$

$$E = 2\{\mathbf{p^{2}} - 2\mathbf{q} + \mathbf{p'^{2}} - 2\mathbf{q'} - \mathbf{pp'}\}$$

This matches option (a) when factoring out the 2.

**Answer:** (a)  $2\{p^2 - 2q + p'^2 - 2q' - pp'\}$ 

4. Question: If the roots of the equation  $(a-1)(x^2+x+1)^2=(a+1)(x^4+x^2+1)$  are real and distinct then the value of  $a \in$ 

Solution:

- (i) Use the identity:  $x^4 + x^2 + 1 = (x^2 + x + 1)(x^2 x + 1)$ .
- (ii) The equation becomes:

$$(a-1)(x^2+x+1)^2 = (a+1)(x^2+x+1)(x^2-x+1)$$

(iii) Since  $x^2 + x + 1 = (x + 1/2)^2 + 3/4 > 0$  for all real x, we can divide by  $x^2 + x + 1$ :

$$(a-1)(x^2+x+1) = (a+1)(x^2-x+1)$$

2

(iv) Expand and rearrange to form a quadratic equation  $Ax^2 + Bx + C = 0$ :

$$(a-1)x^{2} + (a-1)x + (a-1) = (a+1)x^{2} - (a+1)x + (a+1)$$

$$0 = [(a+1) - (a-1)]x^{2} + [-(a+1) - (a-1)]x + [(a+1) - (a-1)]$$

$$0 = 2x^{2} + (-2a)x + 2$$

$$x^{2} - ax + 1 = 0$$

(v) The roots of this quadratic equation are real and distinct if the discriminant D > 0.

$$D = (-a)^2 - 4(1)(1) = a^2 - 4$$

(vi) Set D > 0:

$$a^2 - 4 > 0 \implies (a - 2)(a + 2) > 0$$

The inequality is satisfied when a is outside the roots of  $a^2 - 4 = 0$ :

$$\mathbf{a} \in (-\infty, -\mathbf{2}) \cup (\mathbf{2}, \infty)$$

(vii) We must also check the case where the factor  $x^2 + x + 1 = 0$  was divided out. Since  $x^2 + x + 1$  has no real roots, this division does not lose any real roots.

**Answer:** (b)  $(-\infty, -2) \cup (2, \infty)$ 

5. Question: If the roots of the equation  $ax^2 - bx + c = 0$  are  $\alpha, \beta$  then the roots of the equation  $b^2cx^2 - ab^2x + a^3 = 0$  are

## Solution:

(i) From  $ax^2 - bx + c = 0$ :

$$\alpha + \beta = \frac{b}{a}$$
 and  $\alpha\beta = \frac{c}{a}$ 

- (ii) Consider the second equation  $b^2cx^2 ab^2x + a^3 = 0$ . If  $x_0$  is a root of this equation, then  $b^2cx_0^2 ab^2x_0 + a^3 = 0$ .
- (iii) We use the substitution method. Let the new root be y. The relation x = g(y) is needed. Let's look at the reciprocals of the original roots:  $1/\alpha, 1/\beta$ . They satisfy  $cx^2 bx + a = 0$ .
- (iv) Rearrange the second equation: Divide by  $b^2c$ :

$$x^2 - \frac{a}{c}x + \frac{a^3}{b^2c} = 0$$

Using the relations  $b/a = \alpha + \beta$  and  $c/a = \alpha\beta$ :

$$\frac{a}{c} = \frac{1}{\alpha\beta}$$
 and  $b^2 = a^2(\alpha + \beta)^2$ 

The second equation is:

$$x^2 - \frac{1}{\alpha\beta}x + \frac{a^3}{a^2(\alpha+\beta)^2c} = 0$$

$$x^2 - \frac{1}{\alpha \beta} x + \frac{a}{c(\alpha + \beta)^2} = 0$$

Since  $c/a = \alpha \beta$ ,  $a/c = 1/\alpha \beta$ :

$$x^2 - \frac{1}{\alpha \beta} x + \frac{1}{(\alpha \beta)^2 (\alpha + \beta)^2} \frac{1}{\alpha \beta} = 0$$

This approach seems complicated.

(v) Alternative approach (Testing options): Let the new roots be  $y_1, y_2$ . Check if  $y_1$  and  $y_2$  satisfy the original equation  $ax^2 - bx + c = 0$  if we substitute x = h(y). Let the new roots be  $y_1 = \frac{1}{\alpha^3 + \alpha\beta}$  and  $y_2 = \frac{1}{\beta^3 + \alpha\beta}$ . The term  $\alpha^3 + \alpha\beta = \alpha(\alpha^2 + \beta)$ . Since  $\alpha$  is a root of  $ax^2 - bx + c = 0$ :

$$a\alpha^2 - b\alpha + c = 0 \implies \alpha^2 = \frac{b\alpha - c}{a}$$

(vi) Let's check the transformed root form. A common transformation is  $y = \frac{1}{x^k}$ . Let x = 1/y. Substitute x = 1/y into the second equation:  $b^2c(1/y)^2 - ab^2(1/y) + a^3 = 0$ .

$$b^2c - ab^2y + a^3y^2 = 0 \implies a^3y^2 - ab^2y + b^2c = 0$$

This equation has roots  $1/\alpha$ ,  $1/\beta$  if  $a=b^2$  and  $b=ab^2/a^3$  and  $c=b^2c/a^3$ . No.

Let's look at the roots of  $a^3y^2 - ab^2y + b^2c = 0$ . Sum of roots:  $S = \frac{ab^2}{a^3} = \frac{b^2}{a^2}$ . Product of roots:  $P = \frac{b^2c}{a^3}$ . If the roots are  $1/\alpha^2$  and  $1/\beta^2$ :

$$S = \frac{1}{\alpha^2} + \frac{1}{\beta^2} = \frac{\alpha^2 + \beta^2}{(\alpha\beta)^2} = \frac{(\alpha + \beta)^2 - 2\alpha\beta}{(\alpha\beta)^2} = \frac{(b/a)^2 - 2c/a}{(c/a)^2} = \frac{b^2/a^2 - 2ac/a^2}{c^2/a^2} = \frac{b^2 - 2ac}{c^2}$$

This is not  $b^2/a^2$ .

The term in option (b) is  $\frac{1}{\alpha^2 + \alpha\beta}$  and  $\frac{1}{\beta^2 + \alpha\beta}$ .

$$\alpha^2 + \alpha\beta = \alpha(\alpha + \beta) = \alpha(b/a)$$

$$\beta^2 + \alpha\beta = \beta(\beta + \alpha) = \beta(b/a)$$

New roots are  $y_1 = \frac{1}{\alpha(b/a)} = \frac{a}{b\alpha}$  and  $y_2 = \frac{a}{b\beta}$ .

$$S' = \frac{a}{b} \left( \frac{1}{\alpha} + \frac{1}{\beta} \right) = \frac{a}{b} \left( \frac{\alpha + \beta}{\alpha \beta} \right) = \frac{a}{b} \left( \frac{b/a}{c/a} \right) = \frac{a}{b} \cdot \frac{b}{c} = \frac{a}{c}$$

$$P' = \frac{a^2}{b^2 \alpha \beta} = \frac{a^2}{b^2 (c/a)} = \frac{a^3}{b^2 c}$$

The new equation is  $x^2 - S'x + P' = 0$ :

$$x^2 - \frac{a}{c}x + \frac{a^3}{b^2c} = 0$$

Multiply by  $b^2c$ :

$$b^2cx^2 - ab^2x + a^3 = 0$$

This is exactly the second equation.

**Answer:** (b)  $\frac{1}{\alpha^2 + \alpha\beta}$ ,  $\frac{1}{\beta^2 + \alpha\beta}$ 

6. **Question:** If  $\alpha, \beta$  are the roots of the equation  $x^2 - ax + b = 0$  and  $A_n = \alpha^n + \beta^n$ , then which of the following is true?

Solution: This is a relationship based on the roots of a quadratic equation, known as a recurrence relation.

(i) Since  $\alpha$  is a root of  $x^2 - ax + b = 0$ :

$$\alpha^2 - a\alpha + b = 0 \implies \alpha^2 = a\alpha - b$$

(ii) Multiply by  $\alpha^{n-1}$ :

$$\alpha^{n+1} = a\alpha^n - b\alpha^{n-1}$$

(iii) Similarly, since  $\beta$  is a root:

$$\beta^{n+1} = a\beta^n - b\beta^{n-1}$$

(iv) Add the two equations:

$$\alpha^{n+1} + \beta^{n+1} = a(\alpha^n + \beta^n) - b(\alpha^{n-1} + \beta^{n-1})$$

(v) Substitute  $A_k = \alpha^k + \beta^k$ :

$$\mathbf{A_{n+1}} = \mathbf{aA_n} - \mathbf{bA_{n-1}}$$

**Answer:** (c)  $A_{n+1} = aA_n - bA_{n-1}$ 

**Question:** Number of values of b for which equations  $x^3 + bx + 1 = 0$  and  $x^4 + bx^2 + 1 = 0$  have a common root. **Solution:** Let k be the common root.

$$k^3 + bk + 1 = 0 (1)$$

$$k^4 + bk^2 + 1 = 0 (2)$$

(i) Multiply equation (1) by k:

$$k(k^3 + bk + 1) = k^4 + bk^2 + k = 0$$

(ii) Substitute  $k^4 + bk^2 = -1$  from equation (2) into the result from (i):

$$-1 + k = 0 \implies \mathbf{k} = \mathbf{1}$$

- (iii) The only possible common root is k = 1. We must check if k = 1 satisfies both original equations for some value of b.
- (iv) Substitute k = 1 into equation (1):

$$(1)^3 + b(1) + 1 = 0 \implies 1 + b + 1 = 0 \implies \mathbf{b} = -2$$

(v) Check k = 1 and b = -2 in equation (2):

$$(1)^4 + (-2)(1)^2 + 1 = 1 - 2 + 1 = 0$$

Since k=1 satisfies both equations when b=-2, the equations have a common root when b=-2.

(vi) Thus, there is exactly \*\*one\*\* value of b for which the equations have a common root.

**Answer:** (b) 1

- 8. **Question:** Total number of integral values of a so that  $x^2 (a+1)x + a 1 = 0$  has integral roots is equal to **Solution:** Let  $\alpha$  and  $\beta$  be the integral roots of  $x^2 (a+1)x + a 1 = 0$ .
  - (i) By Vieta's formulas:

$$\alpha + \beta = a + 1$$

$$\alpha\beta = a - 1$$

(ii) Eliminate a from the two equations:

$$a = \alpha + \beta - 1$$

$$\alpha\beta = (\alpha + \beta - 1) - 1$$

$$\alpha\beta = \alpha + \beta - 2$$

(iii) Rearrange the expression to factor:

$$\alpha\beta - \alpha - \beta + 2 = 0$$

Add 1 to both sides to complete the factoring pattern  $\alpha\beta - \alpha - \beta + 1 = (\alpha - 1)(\beta - 1)$ :

$$\alpha\beta - \alpha - \beta + 1 = -1$$

$$(\alpha - 1)(\beta - 1) = -1$$

- (iv) Since  $\alpha$  and  $\beta$  are integral roots,  $\alpha 1$  and  $\beta 1$  must be integers. The only pairs of integers whose product is -1 are (1, -1) and (-1, 1).
- (v) Case 1:  $\alpha 1 = 1$  and  $\beta 1 = -1$ .

$$\alpha = 2$$
 and  $\beta = 0$ 

Calculate a using  $a = \alpha + \beta - 1$ :

$$a = 2 + 0 - 1 = \mathbf{1}$$

(vi) Case 2:  $\alpha - 1 = -1$  and  $\beta - 1 = 1$ .

$$\alpha=0 \quad \text{and} \quad \beta=2$$

Calculate a using  $a = \alpha + \beta - 1$ :

$$a = 0 + 2 - 1 = 1$$

(vii) There is only \*\*one\*\* distinct integral value of a, which is a = 1.

Answer: (a) 1

9. **Question:** If the equation  $x^2 + ax + b = 0$  has distinct real roots and  $x^2 + a|x| + b = 0$  has only one real root, then which of the following is true.

**Solution:** Let  $f(x) = x^2 + ax + b$  and  $g(x) = x^2 + a|x| + b$ .

(i) f(x) = 0 has \*\*distinct real roots\*\*  $\implies D = a^2 - 4b > 0$ .

- (ii) g(x) = 0 has \*\*only one real root\*\*. Since g(x) is an even function, if x = r is a root, then x = -r is also a root (unless r = 0). If  $r \neq 0$  is a root, then g(x) has at least two roots  $(\pm r)$ , which contradicts having only one real root. Therefore, the only possible real root must be  $\mathbf{x} = \mathbf{0}$ .
- (iii) Substitute x = 0 into g(x) = 0:

$$(0)^2 + a|0| + b = 0 \implies \mathbf{b} = \mathbf{0}$$

- (iv) Since b=0, the first equation becomes  $x^2+ax=0 \implies x(x+a)=0$ . The roots are x=0 and x=-a.
- (v) f(x) = 0 must have distinct real roots.
  - If a = 0, the roots are x = 0, 0 (not distinct).
  - If  $a \neq 0$ , the roots 0 and -a are distinct.

So, we must have  $\mathbf{a} \neq \mathbf{0}$ .

- (vi) Check the second equation with b=0:  $x^2+a|x|=0 \implies |x|(|x|+a)=0$ . The solutions are:
  - $|x| = 0 \implies x = 0$  (one root).
  - $|x| + a = 0 \implies |x| = -a$ .

For |x| = -a to have solutions, we must have  $-a \ge 0$ , or  $a \le 0$ .

- (vii) If a < 0, then |x| = -a has two roots  $x = \pm (-a) = \mp a$ , which are  $\neq 0$ . This would mean g(x) = 0 has three roots (0, -a, a), contradicting "only one real root".
- (viii) Therefore, the only way g(x) = 0 has only one real root (x = 0) is if |x| + a = 0 has NO solutions for  $x \neq 0$ . This requires |x| = -a to have no positive solutions for |x|.

$$|x| = -a$$

If  $-a > 0 \implies a < 0$ , then |x| = -a has two distinct non-zero roots,  $\pm(-a)$ . If  $-a = 0 \implies a = 0$ , then |x| = 0, root is x = 0. If  $-a < 0 \implies a > 0$ , then |x| = -a has no real roots.

- (ix) Combining the required conditions:
  - b = 0.
  - $a \neq 0$  (for f(x) = 0 to have distinct roots).
  - a > 0 (for g(x) = 0 to have only one root x = 0).
- (x) The combined condition is b = 0, a > 0.

**Answer:** (a) b = 0, a > 0

10. **Question:** If the equation  $|x^2 + bx + c| = k$  has four real roots then

**Solution:** Let  $f(x) = x^2 + bx + c$ . The equation |f(x)| = k has four distinct real roots if the graph of y = |f(x)| intersects the horizontal line y = k at four distinct points.

- (i)  $f(x) = x^2 + bx + c$  is a parabola opening upwards. Its vertex is at  $x_v = -b/2$ .
- (ii) The minimum value of f(x) is  $f(x_v) = (-\frac{b}{2})^2 + b(-\frac{b}{2}) + c = \frac{b^2}{4} \frac{b^2}{2} + c = c \frac{b^2}{4}$ . Let  $m = f(x_v) = \frac{4c b^2}{4}$ .
- (iii) For the graph of y = |f(x)| to have a "V-shape" or "W-shape" near the vertex, the original parabola f(x) must cross the x-axis, i.e., f(x) = 0 must have two distinct real roots.

$$D = b^2 - 4c > 0 \implies \mathbf{b^2} - 4\mathbf{c} > \mathbf{0}$$

This means the minimum value m must be negative:  $m = c - b^2/4 < 0$ . The graph dips below the x-axis.

- (iv) The graph of y=|f(x)| is obtained by reflecting the part of f(x) below the x-axis. The maximum value of |f(x)| near the vertex is  $|m|=\left|c-\frac{b^2}{4}\right|=-\left(c-\frac{b^2}{4}\right)=\frac{b^2}{4}-c=\frac{b^2-4c}{4}$ .
- (v) For the line y = k to intersect y = |f(x)| at four distinct points, k must be positive and must be less than the height of the reflected "hump" below the x-axis.

$$0 < k < \frac{b^2 - 4c}{4}$$

(vi) Recheck the options: Option (a) has  $0 < k < \frac{4c - b^2}{4}$ . Since  $b^2 - 4c > 0$ , we have  $4c - b^2 < 0$ . The upper bound for k cannot be negative. The correct upper bound is  $\frac{b^2 - 4c}{4}$ . The option (a) must have a typo and intended  $\frac{b^2 - 4c}{4}$ . We select (a) as the intended option but note the sign error.

**Answer:** (a)  $b^2 - 4c > 0$  and  $0 < k < \frac{4c - b^2}{4}$  (with the assumption that the upper bound should be  $\frac{b^2 - 4c}{4}$ )

11. Question: If a,b,c,  $d \in R$  then the equation  $(x^2 + ax - 3b)(x^2 - cx + b)(x^2 - dx + 2b) = 0$  has

**Solution:** The equation is  $Q_1(x)Q_2(x)Q_3(x) = 0$ . The overall equation has real roots if at least one of the quadratic factors has a non-negative discriminant.

(i) Calculate the discriminants  $D_i$  for each quadratic factor:

$$D_1 = a^2 - 4(1)(-3b) = a^2 + 12b$$

$$D_2 = (-c)^2 - 4(1)(b) = c^2 - 4b$$

$$D_3 = (-d)^2 - 4(1)(2b) = d^2 - 8b$$

- (ii) The equation has NO real roots if  $D_1 < 0$  AND  $D_2 < 0$  AND  $D_3 < 0$ .
- (iii) Assume, for contradiction, that there are no real roots (i.e., all  $D_i < 0$ ).
  - $D_2 < 0 \implies c^2 < 4b$
  - $D_3 < 0 \implies d^2 < 8b$

Both conditions imply that b must be positive, b > 0.

(iv) Now check  $D_1$  with b > 0:

$$D_1 = a^2 + 12b$$

Since  $a^2 \ge 0$  and b > 0, we have  $D_1 = a^2 + 12b > 0$ .

- (v) Contradiction: If  $D_2 < 0$  and  $D_3 < 0$ , then  $D_1$  must be positive.
- (vi) Therefore, it is impossible for all three discriminants to be simultaneously negative. Since  $D_1 > 0$  for all a, c, d whenever  $D_2 < 0$  and  $D_3 < 0$ , the first quadratic  $Q_1(x)$  must have  $\mathbf{D_1} > \mathbf{0}$  if b > 0 and thus has two real roots. If  $b \le 0$ , then  $D_1 = a^2 + 12b$  may be  $\ge 0$  (if  $a^2 \ge -12b$ ) or  $D_3 = d^2 8b$  will be  $\ge 0$ .
- (vii) If b < 0,  $D_3 = d^2 8b > 0$ , so  $Q_3(x)$  has two real roots.
- (viii) In all cases, at least one discriminant is non-negative, meaning the overall equation has \*\*at least two real roots\*\*.

**Answer:** (d) at least 2 real roots.

12. **Question:** Let  $\alpha, \beta$  be the real and distinct roots of the equation  $ax^2 + bx + c = |c|, (a > 0, c \neq 0)$  p, q be the real and distinct roots of the equation  $ax^2 + bx + c = 0$ . Then

**Solution:** Let  $f(x) = ax^2 + bx + c$ .

- The roots of f(x) = |c| are  $\alpha, \beta$ .
- The roots of f(x) = 0 are p, q.

The coefficient a > 0, so the parabola opens upward.

- (i) Since p, q are the roots of f(x) = 0, we have f(p) = 0 and f(q) = 0.
- (ii)  $\alpha, \beta$  are the roots of f(x) = |c|. Assume  $\alpha < \beta$ .
- (iii) Since  $c \neq 0$ , |c| > 0. The roots p, q are the points where the parabola intersects the line y = 0. The roots  $\alpha, \beta$  are the points where the parabola intersects the line y = |c|.
- (iv) Since the parabola opens upward (a > 0), and the line y = |c| is above the line y = 0, the roots of f(x) = |c| must be "further apart" than the roots of f(x) = 0.
- (v) Visualizing the graphs:

$$f(\alpha) = |c|$$
 and  $f(\beta) = |c|$ 

Since f(p) = 0 and f(q) = 0 and |c| > 0, the value of f(x) increases as x moves away from the axis of symmetry.

(vi) Therefore, p and q must lie between  $\alpha$  and  $\beta$ .

$$\alpha < \mathbf{p} < \mathbf{q} < \beta$$
 or  $\alpha < \mathbf{q} < \mathbf{p} < \beta$ 

**Answer:** (a) p and q lie between  $\alpha, \beta$ 

13. Question: Let  $f(x) = ax^2 + bx + c$  and f(-1) < 1, f(1) > -1, f(3) < -4, and  $a \ne 0$ , then

**Solution:** We use the given inequalities to find the sign of a.

(i) Given inequalities:

$$f(-1) = a - b + c < 1 \implies a - b + c - 1 < 0 \text{ (Eq. 1)}$$
  
 $f(1) = a + b + c > -1 \implies a + b + c + 1 > 0 \text{ (Eq. 2)}$   
 $f(3) = 9a + 3b + c < -4 \implies 9a + 3b + c + 4 < 0 \text{ (Eq. 3)}$ 

(ii) Combine (Eq. 2) and (Eq. 1): Subtracting (Eq. 1) from (Eq. 2):

$$(a+b+c) - (a-b+c) > -1 - 1$$
  
 $2b > -2 \implies b > -1$ 

(iii) Combine (Eq. 2) and (Eq. 3) to eliminate b: Multiply (Eq. 2) by 3:  $3(a+b+c) > -3 \implies 3a+3b+3c > -3$ . Subtract this from (Eq. 3):

$$(9a + 3b + c) - (3a + 3b + 3c) < -4 - (-3)$$
  
 $6a - 2c < -1 \implies 2c > 6a + 1$ 

(iv) Combine (Eq. 1) and (Eq. 3) to eliminate b: Multiply (Eq. 1) by 3:  $3(a-b+c) < 3 \implies 3a-3b+3c < 3$ . Add this to (Eq. 3):

$$(9a + 3b + c) + (3a - 3b + 3c) < -4 + 3$$
$$12a + 4c < -1$$

(v) Substitute 2c > 6a + 1 from (iii) into 12a + 4c < -1. 4c > 12a + 2.

$$12a + (12a + 2) < -1$$
  
 $24a + 2 < -1$   
 $24a < -3$   
 $a < -\frac{3}{24} \implies \mathbf{a} < -\frac{1}{8}$ 

(vi) Since a < 0, the parabola opens \*\*downward\*\*.

**Answer:** (b) a < 0

14. **Question:** A point  $(\alpha, \alpha^2)$  lies inside the triangle formed by the coordinate axes and the line x + y = 6. If  $\alpha$  is a root of  $f(x) = x^2 + ax + b = 0$  then which of the following is always true?

## Solution:

- (i) The triangle is defined by  $x \ge 0$ ,  $y \ge 0$ , and  $x + y \le 6$ .
- (ii) The point  $(\alpha, \alpha^2)$  lies inside the triangle, so it must satisfy the boundary conditions strictly:
  - $x > 0 \implies \alpha > \mathbf{0}$
  - $y > 0 \implies \alpha^2 > 0$  (This is true since  $\alpha > 0$ )
  - $x + y < 6 \implies \alpha + \alpha^2 < 6$
- (iii) Solve the inequality  $\alpha^2 + \alpha 6 < 0$ :

$$(\alpha + 3)(\alpha - 2) < 0$$

The roots are -3 and 2. For the inequality to be true,  $\alpha$  must lie between the roots:  $-3 < \alpha < 2$ .

- (iv) Combining the conditions from (ii) and (iii):  $0 < \alpha < 2$ .
- (v)  $\alpha$  is a root of  $f(x) = x^2 + ax + b = 0$ . The existence of this root  $\alpha \in (0,2)$  implies that the quadratic function f(x) changes sign or touches the x-axis in the interval (0,2).
- (vi) Evaluate the options using the knowledge that  $f(\alpha) = 0$  for some  $\alpha \in (0,2)$ :
  - (a) f(0) = b. f(0) could be positive or negative. For example, if roots are 0.5 and 1.5,  $f(x) = (x 0.5)(x 1.5) = x^2 2x + 0.75$ , f(0) = 0.75 > 0. If roots are  $\alpha \in (0, 2)$  and  $\beta > 2$ ,  $f(0) = \alpha\beta > 0$ . If roots are  $\alpha \in (0, 2)$  and  $\beta < 0$ ,  $f(0) = \alpha\beta < 0$ . f(0) > 0 is not always true.
  - (b) f(2) = 4 + 2a + b. If  $\alpha$  is the only root in (0,2), f(x) must change sign at  $\alpha$ . If f(x) opens up (or down), f(0) and f(2) could have the same or opposite signs. Not always true.
  - (c)  $f(\beta) \leq 0$  for at least one  $\beta \in (0,2)$ . Since  $\alpha$  is a root and  $\alpha \in (0,2)$ ,  $f(\alpha) = 0$ . If we choose  $\beta = \alpha$ , then  $f(\beta) = f(\alpha) = 0$ . Since  $0 \leq 0$ , the statement  $f(\beta) \leq 0$  for at least one  $\beta \in (0,2)$  is always true (by choosing  $\beta = \alpha$ ).
- (vii) The other options are not always true. For example,  $f(0) = b = \alpha \beta$ . If  $\beta \in (0,2)$ , f(0) > 0. If  $\beta$  is a large negative number, f(0) < 0.

**Answer:** (c)  $f(\beta) < 0$  for at least one  $\beta \in (0,2)$