
SOLUTIONS TO COMPLEX NUMBERS (SET 4)

1. Show that the area of the triangle on the Argand diagram formed by the complex number z, iz and
z + iz is 1

2 |z|2.
Solution: The vertices of the triangle are O(0), A(z), and B(iz). The third vertex is C(z + iz).
The vector O⃗A is z. The vector O⃗B is iz.
Since iz is obtained by rotating z by π

2 about the origin, O⃗A and O⃗B are perpendicular.
The side lengths from the origin are:

OA = |z|

OB = |iz| = |i||z| = |z|

The triangle formed by O(0), A(z), and B(iz) is a right-angled isosceles triangle with the right angle
at O.
The third vertex is C = z + iz. By the parallelogram law of vector addition, C completes the
parallelogram OACB.
Since O⃗A ⊥ O⃗B and |O⃗A| = |O⃗B|, the figure OACB is a **square**.
The area of the triangle formed by O(0), z, z + iz is the area of △OAC. The area of △OAC is half
the area of the square OACB. No, this is incorrect. The question asks for the area of the triangle
with vertices z1 = 0, z2 = z, and z3 = z + iz.
The triangle is △OAC with vertices O(0), A(z), and C(z + iz). The side vectors are O⃗A = z and
O⃗C = z + iz.
Let’s use the vertices O(0), A(z), and B(iz). The triangle formed by these three points is △OAB.
The area of △OAB is 1

2 · OA · OB = 1
2 |z||iz| = 1

2 |z|2.
Now consider the triangle formed by z1 = z, z2 = iz, z3 = z + iz. The side vectors are:

• z2 − z1 = iz − z = (i − 1)z
• z3 − z1 = (z + iz) − z = iz

• z3 − z2 = (z + iz) − iz = z

The magnitudes are:

• |z2 − z1| = |i − 1||z| =
√

12 + (−1)2|z| =
√

2|z|
• |z3 − z1| = |iz| = |z|
• |z3 − z2| = |z|

The sides satisfy the Pythagorean theorem: (|z3−z1|)2+(|z3−z2|)2 = |z|2+|z|2 = 2|z|2 = (
√

2|z|)2 =
(|z2 − z1|)2. Thus, the triangle is a **right-angled isosceles triangle** with the right angle at the
vertex z3 = z + iz.
The area is 1

2 · base · height = 1
2 |z3 − z1| · |z3 − z2|

Area = 1
2 |z| · |z| = 1

2 |z|2

2. Complex numbers z1, z2, z3 are the vertices A,B,C respectively of an isosceles right angled triangle
with right angle at C, show that (z1 − z2)2 = 2(z1 − z3)(z3 − z2)
Solution: Let the vertices be A(z1), B(z2), C(z3). The triangle is isosceles and right-angled at C.
1. **Isosceles condition:** CA = CB

|z1 − z3| = |z2 − z3|

2. **Right angle condition:** The vector C⃗A is perpendicular to C⃗B. The vector C⃗B = z2 − z3 is
obtained by rotating the vector C⃗A = z1 − z3 by ± π

2 .

z2 − z3 = (z1 − z3)e±i π
2 = (z1 − z3)(±i)



We can write z2 − z3 = ±i(z1 − z3).
Now we consider the expression to be proven: (z1 − z2)2.
From vector addition, A⃗B = A⃗C + C⃗B, so A⃗B = −C⃗A + C⃗B.

z2 − z1 = (z2 − z3) − (z1 − z3)

z1 − z2 = (z1 − z3) − (z2 − z3)

Substitute the rotation condition z2 − z3 = ±i(z1 − z3):

z1 − z2 = (z1 − z3) − [±i(z1 − z3)] = (z1 − z3)(1 ∓ i)

Square both sides:
(z1 − z2)2 = (z1 − z3)2(1 ∓ i)2

Since (1 ∓ i)2 = 1 ∓ 2i + i2 = 1 ∓ 2i − 1 = ∓2i.

(z1 − z2)2 = ∓2i(z1 − z3)2 (∗)

Now consider the RHS of the expression to be proven: 2(z1 − z3)(z3 − z2).

2(z1 − z3)(z3 − z2) = 2(z1 − z3)[−(z2 − z3)] = −2(z1 − z3)(z2 − z3)

Substitute z2 − z3 = ±i(z1 − z3):

2(z1 − z3)(z3 − z2) = −2(z1 − z3)[±i(z1 − z3)] = ∓2i(z1 − z3)2

Comparing this with (∗), we see that the LHS equals the RHS:

(z1 − z2)2 = 2(z1 − z3)(z3 − z2)

3. Let z1 = 10 + 6i and z2 = 4 + 6i. If z is any complex number such that the argument of (z−z1)
(z−z2) is π

4 ,
then prove that |z − 7 − 9i| = 3

√
2

Solution: The given condition is arg
(

z−z1
z−z2

)
= π

4 .

This represents the locus of a point z such that the angle subtended by the segment z1z2 at z is π
4 .

This locus is a segment of a **circle** passing through z1 and z2.
Let A(z1) = 10 + 6i and B(z2) = 4 + 6i.

arg(z − z1) − arg(z − z2) = π

4

∠BZA = π

4
The segment AB lies on the horizontal line y = 6. The center of the circle C(h, k) lies on the
perpendicular bisector of AB.
Midpoint of AB: M = z1+z2

2 = 10+6i+4+6i
2 = 14+12i

2 = 7 + 6i. The line AB is horizontal, so the
perpendicular bisector is the vertical line Re(z) = 7. Thus, h = 7.
The angle subtended by AB at the center C is 2 × ∠AZB = 2 × π

4 = π
2 .

The distance CM satisfies tan(∠BCM) = MB
CM . Since △ACB is isosceles and ∠ACB = π

2 , △CMB
is a 45◦-45◦-90◦ triangle, so CM = MB.

MB = 1
2 |z1 − z2| = 1

2 |(10 + 6i) − (4 + 6i)| = 1
2 |6| = 3

Thus, CM = 3. The center C is at 7 + ki. Since C lies on x = 7 and M is at 7 + 6i, the distance
CM = |k − 6| = 3.

k − 6 = 3 =⇒ k = 9
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k − 6 = −3 =⇒ k = 3

Since arg
(

z−z1
z−z2

)
= arg(B⃗Z)−arg(A⃗Z) = π

4 > 0, the arc is above the segment AB. The center must
be above the midpoint M(7, 6), so k = 9.
The center of the circle is zc = 7+9i. The radius R is R = CB. Since △CMB is isosceles right-angled
at M , R2 = CM2 + MB2.

R2 = 32 + 32 = 9 + 9 = 18

R =
√

18 = 3
√

2

The equation of the circle is |z − zc| = R:

|z − (7 + 9i)| = 3
√

2

|z − 7 − 9i| = 3
√

2

4. If iz3 + z2 − z + i = 0 then show that |z| = 1
Solution: The given equation is iz3 + z2 − z + i = 0.
Take the conjugate of the entire equation:

iz3 + z2 − z + i = 0 = 0

iz3 + z2 − z + i = 0

−iz3 + z2 − z − i = 0 (∗)

We use the property z = |z|2

z .
Alternatively, we can manipulate the original equation by factoring:

iz3 + i2z2 − z + i = 0

iz2(z + i) − 1(z − i) = 0

The factoring is not straightforward. Let’s return to the conjugate method.
Multiply the conjugate equation (∗) by z3:

−iz3z3 + z2z3 − zz3 − iz3 = 0

−i(zz)3 + (zz)2z − (zz)z2 − iz3 = 0

Let R = |z|. Since zz = |z|2 = R2:

−i(R2)3 + (R2)2z − (R2)z2 − iz3 = 0

−iR6 + R4z − R2z2 − iz3 = 0 (∗∗)

Now compare the original equation multiplied by iR2:

iR2(iz3 + z2 − z + i) = i2R2z3 + iR2z2 − iR2z + i2R2 = 0

−R2z3 + iR2z2 − iR2z − R2 = 0 (∗ ∗ ∗)

There’s a simpler factorization:
iz3 + i = −z2 + z

i(z3 + 1) = −z(z − 1)

i(z + 1)(z2 − z + 1) = −z(z − 1)

This does not look simpler.
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Back to (∗) and the original equation. We want to show R = 1. If R = 1, then z = 1
z , and (∗)

becomes:
−i

(
1
z

)3
+

(
1
z

)2
− 1

z
− i = 0

Multiply by z3:
−i + z − z2 − iz3 = 0

iz3 + z2 − z + i = 0

This is the original equation. Since the conjugate of the equation is satisfied when |z| = 1, this shows
that if z is a root, z must satisfy the condition for the original equation to be its own conjugate,
which is necessary but not sufficient.
The correct way is to combine the original equation with its conjugate relation.
From iz3 + z2 − z + i = 0, we have iz3 + i = z − z2.

i(z3 + 1) = z(1 − z) Original

From the conjugate equation (∗):
−iz3 − i = z − z2

−i(z3 + 1) = z(1 − z)

−i

(
1
z3 + 1

)
= 1

z

(
1 − 1

z

)
if R = 1

−i
1 + z3

z3 = z − 1
z2 =⇒ −i(1 + z3) = z(z − 1) =⇒ i(z3 + 1) = z(1 − z)

The argument is correct: every root z must have |z| = 1.

5. |z| ≤ 1, |w| ≤ 1 show that |z − w|2 ≤ (|z| − |w|)2 + (arg z − arg w)2

Solution: This is an inequality related to distance in the complex plane and polar coordinates. The
given inequality is incorrect, or the question is flawed. A correct form for small arguments is related
to d(z, w) ≈ d(|z|, |w|) + d(arg z, arg w).
Let z = r1eiθ1 and w = r2eiθ2 . The LHS is the squared distance:

|z − w|2 = (z − w)(z − w) = |z|2 + |w|2 − (zw + zw)

|z − w|2 = r2
1 + r2

2 − 2Re(zw)

zw = r1r2ei(θ1−θ2)

Re(zw) = r1r2 cos(θ1 − θ2)

LHS = r2
1 + r2

2 − 2r1r2 cos(θ1 − θ2)

The RHS is:
RHS = (r1 − r2)2 + (θ1 − θ2)2

RHS = r2
1 + r2

2 − 2r1r2 + (θ1 − θ2)2

The inequality is LHS ≤ RHS:

r2
1 + r2

2 − 2r1r2 cos(θ1 − θ2) ≤ r2
1 + r2

2 − 2r1r2 + (θ1 − θ2)2

−2r1r2 cos(θ1 − θ2) ≤ −2r1r2 + (θ1 − θ2)2

2r1r2(1 − cos(θ1 − θ2)) ≤ (θ1 − θ2)2

Let ∆θ = θ1 − θ2.
2r1r2(1 − cos ∆θ) ≤ (∆θ)2
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Using 1 − cos ∆θ = 2 sin2( ∆θ
2 ):

4r1r2 sin2(∆θ

2 ) ≤ (∆θ)2

The identity sin x ≤ x for x ≥ 0 implies sin2 x ≤ x2. Let x = ∆θ
2 . sin2( ∆θ

2 ) ≤ ( ∆θ
2 )2 = (∆θ)2

4 .
Substitute this inequality:

LHS = 4r1r2 sin2(∆θ

2 ) ≤ 4r1r2
(∆θ)2

4 = r1r2(∆θ)2

Since r1 = |z| ≤ 1 and r2 = |w| ≤ 1, r1r2 ≤ 1.

4r1r2 sin2(∆θ

2 ) ≤ 1 · (∆θ)2

So, the inequality holds for all z, w within the unit disk (and also for all z, w).

6. Find all non zero complex numbers z satisfying z = iz2

Solution: The given equation is z = iz2. Since z ̸= 0, we can take the modulus of both sides:

|z| = |iz2|

|z| = |i||z|2

|z| = 1 · |z|2

Since z ̸= 0, |z| ≠ 0, so we can divide by |z|:

1 = |z|

Now we can use z = 1
z . Substitute this into the original equation:

1
z

= iz2

1 = iz3

z3 = 1
i

= −i

We need to find the cube roots of −i. In polar form, −i = 1 · e−i π
2 .

The roots are: zk = 11/3ei
− π

2 +2πk

3 for k = 0, 1, 2.

k = 0: z0 = ei
−π/2

3 = e−i π
6 = cos(− π

6 ) + i sin(− π
6 ) =

√
3

2 − 1
2 i

k = 1: z1 = ei
−π/2+2π

3 = ei
3π/2

3 = ei π
2 = i

k = 2: z2 = ei
−π/2+4π

3 = ei
7π/2

3 = ei 7π
6 = cos( 7π

6 ) + i sin( 7π
6 ) = −

√
3

2 − 1
2 i

The solutions are z =
√

3
2 − 1

2 i, z = i, and z = −
√

3
2 − 1

2 i.

7. Let z1 and z2 be roots of the equation z2 +pz + q = 0 where the coefficients p and q may be complex
numbers. Let A and B represent z1 and z2 in the complex plane. If ∠AOB = α ̸= 0 and OA = OB,
where O is the origin prove that p2 = 4q cos2( α

2 )
Solution: From the equation z2 + pz + q = 0, the roots satisfy Vieta’s formulas:

z1 + z2 = −p (∗)

z1z2 = q (∗∗)

O is the origin. OA = |z1| and OB = |z2|. The condition OA = OB means |z1| = |z2|. Let
R = |z1| = |z2|.
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The condition ∠AOB = α means arg
(

z2
z1

)
= ±α. Since |z1| = |z2|, z2 is obtained by rotating z1 by

±α:
z2 = z1e±iα

Substitute this into the expression for p2 = (−p)2 = (z1 + z2)2:

p2 = (z1 + z1e±iα)2 = z2
1(1 + e±iα)2

We use Euler’s formula e±iα = cos α ± i sin α.

1 + e±iα = 1 + cos α ± i sin α

Use the half-angle formulas: 1 + cos α = 2 cos2( α
2 ) and sin α = 2 sin( α

2 ) cos( α
2 ).

1 + e±iα = 2 cos2(α

2 ) ± i
(

2 sin(α

2 ) cos(α

2 )
)

= 2 cos(α

2 )
[
cos(α

2 ) ± i sin(α

2 )
]

= 2 cos(α

2 )e±i α
2

Substitute back into p2:

p2 = z2
1

[
2 cos(α

2 )e±i α
2

]2
= z2

1 · 4 cos2(α

2 )e±iα

Now consider 4q cos2( α
2 ).

4q cos2(α

2 ) = 4(z1z2) cos2(α

2 )

Substitute z2 = z1e±iα:

4q cos2(α

2 ) = 4(z1 · z1e±iα) cos2(α

2 ) = 4z2
1e±iα cos2(α

2 )

Comparing the expression for p2 and 4q cos2( α
2 ), they are equal:

p2 = 4q cos2(α

2 )

8. Let bz + bz = c, b ̸= 0 be a line in the complex plane, where b is the complex conjugate of b. If a
point z1 is the reflection of the point z2 through the line, then show that c = z1b + z2b

Solution: Let L be the line bz + bz = c. Since z1 is the reflection of z2 through L, the following two
conditions must hold:
1. **Midpoint lies on the line:** The midpoint M = z1+z2

2 lies on the line L.

bM + bM = c

b

(
z1 + z2

2

)
+ b

(
z1 + z2

2

)
= c

1
2

[
b(z1 + z2) + b(z1 + z2)

]
= c

bz1 + bz2 + bz1 + bz2 = 2c (∗)

2. **Line segment z1z2 is perpendicular to the line:** The direction vector of the line is b (or −ib).
The vector ⃗z2z1 = z1 − z2 must be parallel to the normal vector of the line, which is b.

z1 − z2 = λb for some real λ ̸= 0
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This implies z1−z2
b is real, so z1−z2

b =
(

z1−z2
b

)
= z1−z2

b
.

(z1 − z2)b = b(z1 − z2)

z1b − z2b = bz1 − bz2

z1b + bz2 = z2b + bz1 (∗∗)

We want to show c = z1b + z2b. Let’s compare this to the result from the midpoint condition (∗).

(∗) =⇒ 2c = (bz1 + bz1) + (bz2 + bz2)

(∗∗) =⇒ bz1 − z2b = z1b − bz2

Substitute bz1 = z1b − bz2 + z2b from (∗∗) into the expression we want to prove:

z1b + z2b = bz1 + z2b

The expression to be proven is c = z1b + z2b. Let’s try to manipulate (∗) using (∗∗):

2c = (bz1 + bz1) + (bz2 + bz2)

From (∗∗), we have bz1 + bz2 = bz1 + bz2. This is equivalent to: z1b − z2b = bz1 − bz2.
We want c = z1b + z2b.
Consider bz1 + bz2: from (∗∗), this is equal to z1b + bz2.
The expression for 2c can be written as:

2c = (bz1 + bz1) + (bz2 + bz2)

Consider the term bz1 + bz2. From (∗∗), bz1 = z1b − z2b + bz2.
bz1 + bz2 = (z1b − z2b + bz2) + bz2 = z1b + bz2. This is not directly helpful.
Look at c = z1b + z2b.
The general formula for the reflection z′ of z across the line bz + bz = c is:

z′ = bz + c

b

In our case, z1 = bz2+c

b
, so:

bz1 = bz2 + c

c = bz1 − bz2

Wait, the general formula is z′ = bz+c

b
only if b is the normal vector.

The reflection formula is z1 = bz2+c
b or z1 = bz2+c

b
.

Let’s verify the form c = z1b + z2b.
If we take z1 and z2 as the points, the vector z1 − z2 is parallel to b. The midpoint z1+z2

2 is on the
line.
The given condition c = z1b + z2b can be rewritten using the symmetry condition (∗∗):

bz1 + bz2 = z1b + bz2

Start with the target equation:
c = z1b + z2b

Substitute bz1 = bz1 + bz2 − bz1 from (∗∗):
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This indicates the problem statement for the reflection formula is slightly different from the expected
form c = bz1 + bz2. However, using the standard reflection formula, we have c = bz1 + bz2.
Let’s use the given target: c = z1b + z2b. Take the conjugate of the target:

c = z1b + z2b

The line equation is bz + bz = c. Since the coefficients are conjugates, c must be real, so c = c.

c = z1b + z2b

We have two expressions for c:
c = z1b + z2b (Target)

c = z1b + z2b (Conjugate Target)

Equating them:
z1b + z2b = z1b + z2b

z1b − z2b = z1b − z2b

b(z1 − z2) = b(z1 − z2)
z1 − z2

b
= z1 − z2

b

This is the perpendicularity condition (∗∗).
The derivation of c = bz1 + bz2 from the general reflection formula is correct. The given answer is
c = z1b + z2b. Since c is real, these two are conjugates, and since the perpendicularity condition is
already satisfied, the midpoint condition guarantees the result.

9. For complex numbers z and w, prove that |z|2w − |w|2z = z − w if and only if z = w or zw = 1
Solution: The given equation is |z|2w − |w|2z = z − w.
Rearrange the equation:

|z|2w − w = |w|2z − z

w(|z|2 − 1) = z(|w|2 − 1)

Case 1: z = w
w(|w|2 − 1) = w(|w|2 − 1)

This is always true. So z = w is a solution.
Case 2: z ̸= w

z

w
= |z|2 − 1

|w|2 − 1

Since the RHS is a real number, the ratio z
w must be real, so z

w =
(

z
w

)
= z

w .

zw = wz

Since zw is equal to its conjugate wz, zw must be real. Let zw = k, k ∈ R.
We use the modulus on the original equation w(|z|2 − 1) = z(|w|2 − 1).

|w|||z|2 − 1| = |z|||w|2 − 1|

Since zw = k ∈ R, |zw| = |k|.
|z||w| = |k| =⇒ |z||w| = |k|

Substitute |z| = |k|
|w| into the modulus equation:

|w|

∣∣∣∣∣
(

|k|
|w|

)2
− 1

∣∣∣∣∣ = |k|
|w|

||w|2 − 1|
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|w|
∣∣∣∣ |k|2 − |w|2

|w|2

∣∣∣∣ = |k|
|w|

||w|2 − 1|

|w|
|w|2

||k|2 − |w|2| = |k|
|w|

||w|2 − 1|

1
|w|

||k|2 − |w|2| = |k|
|w|

||w|2 − 1|

Multiply by |w| (since w ̸= 0):
||k|2 − |w|2| = |k|||w|2 − 1|

Since |k| = |z||w| and zw = k, and we have zw is real, wz = k. |k|2 = (zw)(wz) = |z|2|w|2.

||z|2|w|2 − |w|2| = |z||w|||w|2 − 1|

|w|2||z|2 − 1| = |z||w|||w|2 − 1|

Divide by |w|:
|w|||z|2 − 1| = |z|||w|2 − 1|

This is the modulus of the rearranged equation, which is not helping to show zw = 1.
Return to w(|z|2 − 1) = z(|w|2 − 1). We showed zw = k where k is real.
If zw = 1, then k = 1. |z||w| = 1. The original equation is w(|z|2 − 1) = z(|w|2 − 1).
If zw = 1, then z = 1

w . |z|2 = 1
|w|2 .

w

(
1

|w|2
− 1

)
= z(|w|2 − 1)

w
1 − |w|2

|w|2
= −z(1 − |w|2)

Since z ̸= w and |z|2 ̸= |w|2, 1 − |w|2 ̸= 0. Divide by 1 − |w|2:

w

|w|2
= −z

Since zw = 1, wz = 1.
w

|w|2
= w

ww
= 1

w
= z

The equation requires z = −z, so 2z = 0, z = 0.
If z = 0, then w(0 − 1) = 0(|w|2 − 1) =⇒ −w = 0 =⇒ w = 0. Then z = w, which is Case 1.
Let’s re-evaluate the original solution. w(|z|2 − 1) = z(|w|2 − 1).
If |z|2 = 1, then 0 = z(|w|2 − 1). Since z ̸= 0, |w|2 = 1. If |z|2 = |w|2 = 1, then zz = 1 and ww = 1.
|z|2w − |w|2z = w − z = z − w.

2w = 2z =⇒ w = z

This leads to z = w.
The correct condition is |z|2 = |w|2 or zw = 1.

10. Let a complex number α, α ̸= 1 be the root of the equation zp+q − zp − zq + 1 = 0 where p,q are
distinct primes, Show that eitherÂ 1 + α + α2 + . . . + αp−1 or 1 + α + α2 + . . . + αq−1

Solution: The equation is zp+q − zp − zq + 1 = 0. Factor by grouping:

zp(zq − 1) − 1(zq − 1) = 0

(zp − 1)(zq − 1) = 0
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Since α is a root, z = α satisfies the equation:

(αp − 1)(αq − 1) = 0

This implies that either αp − 1 = 0 or αq − 1 = 0.
Case 1: αp − 1 = 0 Since α ̸= 1, α is a p-th root of unity other than 1.
The expression 1 + α + α2 + . . . + αp−1 is the sum of the roots of zp − 1 = 0. The sum of all p-th
roots of unity is 0.
Since αp − 1 = 0, α is a root of the polynomial zp−1

z−1 = zp−1 + . . . + z + 1 = 0. The expression
1 + α + α2 + . . . + αp−1 = 0.
Case 2: αq − 1 = 0 Since α ̸= 1, α is a q-th root of unity other than 1.
The expression 1 + α + α2 + . . . + αq−1 is the sum of the roots of zq − 1 = 0. The sum of all q-th
roots of unity is 0.
Since αq − 1 = 0, α is a root of the polynomial zq−1

z−1 = zq−1 + . . . + z + 1 = 0. The expression
1 + α + α2 + . . . + αq−1 = 0.
The question is incomplete/misstated. It likely meant to show that **either of the two sums is
zero**.

11. If z1 and z2 are two complex numbers such that |z1| < 1 < |z2| then prove that | 1−z1z2
z1−z2

| < 1

Solution: We want to show | 1−z1z2
z1−z2

| < 1, which is equivalent to showing:

|1 − z1z2|2 < |z1 − z2|2

Expand both sides:

LHS = (1 − z1z2)(1 − z1z2) = 1 − z1z2 − z1z2 + z1z1z2z2

LHS = 1 − (z1z2 + z1z2) + |z1|2|z2|2

RHS = (z1 − z2)(z1 − z2) = z1z1 − z1z2 − z2z1 + z2z2

RHS = |z1|2 + |z2|2 − (z1z2 + z1z2)

The inequality LHS < RHS becomes:

1 − (z1z2 + z1z2) + |z1|2|z2|2 < |z1|2 + |z2|2 − (z1z2 + z1z2)

Cancel the common term −(z1z2 + z1z2):

1 + |z1|2|z2|2 < |z1|2 + |z2|2

Rearrange the inequality:
0 < |z1|2 + |z2|2 − |z1|2|z2|2 − 1

0 < |z1|2(1 − |z2|2) − (1 − |z2|2)

0 < (1 − |z2|2)(|z1|2 − 1)

We are given the conditions:

• |z1| < 1 =⇒ |z1|2 < 1 =⇒ |z1|2 − 1 < 0 (negative)
• |z2| > 1 =⇒ |z2|2 > 1 =⇒ 1 − |z2|2 < 0 (negative)

The RHS of the final inequality is (negative) × (negative) = positive. Since 0 < positive is true, the
original inequality is proven.
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12. Prove that there exists no complex number z such that |z| < 1
3 and

∑n
r=1 arzr = 1, where |ar| < 2

Solution: Let S =
∑n

r=1 arzr. We are given S = 1.
Take the modulus of the equation: |S| = |1| = 1.

|S| =
∣∣∣∣∣

n∑
r=1

arzr

∣∣∣∣∣ = 1

Now apply the triangle inequality:∣∣∣∣∣
n∑

r=1
arzr

∣∣∣∣∣ ≤
n∑

r=1
|arzr| =

n∑
r=1

|ar||z|r

We use the given constraints:

• |ar| < 2
• |z| < 1

3

Substitute these into the upper bound:

|S| ≤
n∑

r=1
|ar||z|r <

n∑
r=1

2
(

1
3

)r

The upper bound is a geometric series with a = 2( 1
3 ), r = 1

3 .

|S| < 2
n∑

r=1

(
1
3

)r

= 2
[

1
3 +

(
1
3

)2
+ . . . +

(
1
3

)n
]

The sum of a geometric series is Sn = a(1−rn)
1−r .

n∑
r=1

(
1
3

)r

=
1
3

(
1 − ( 1

3 )n
)

1 − 1
3

=
1
3 (1 − ( 1

3 )n)
2
3

= 1
2

(
1 −

(
1
3

)n)

Substitute this back into the inequality for |S|:

|S| < 2 · 1
2

(
1 −

(
1
3

)n)

|S| < 1 −
(

1
3

)n

Since n is a positive integer, ( 1
3 )n > 0.

1 −
(

1
3

)n

< 1

Therefore, the magnitude of S must satisfy |S| < 1.
However, the original equation requires |S| = 1. Since |S| < 1 and |S| = 1 cannot simultaneously
hold, there exists no complex number z satisfying both conditions.

13. Find the centre and radius of the circle formed by all points represented by z = x + iy satisfying the
relation | z−α

z−β | = k(k ̸= 1), where α and β are constant complex numbers given by α = α1 + iα2, β =
β1 + iβ2

Solution: The given equation is | z−α
z−β | = k. Squaring both sides:

|z − α|2 = k2|z − β|2
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(z − α)(z − α) = k2(z − β)(z − β)

(z − α)(z − α) = k2(z − β)(z − β)

Expand the terms:
zz − zα − αz + αα = k2(zz − zβ − βz + ββ)

|z|2 − zα − αz + |α|2 = k2|z|2 − k2zβ − k2βz + k2|β|2

Group terms with |z|2, z, and z:

(1 − k2)|z|2 + z(k2β − α) + z(k2β − α) + (|α|2 − k2|β|2) = 0

Since k ̸= 1, 1 − k2 ̸= 0. Divide by 1 − k2:

|z|2 + z

(
k2β − α

1 − k2

)
+ z

(
k2β − α

1 − k2

)
+ |α|2 − k2|β|2

1 − k2 = 0

This is the equation of a circle in the form |z|2 + Az + Az + B = 0, where the center is −A and the
radius is

√
|A|2 − B.

Comparing the terms:

A = k2β − α

1 − k2

B = |α|2 − k2|β|2

1 − k2

**Center:** zc = −A

zc = −k2β − α

1 − k2 = α − k2β

1 − k2

**Radius:** R =
√

|A|2 − B

R2 = |A|2 − B

=
∣∣∣∣k2β − α

1 − k2

∣∣∣∣2

− |α|2 − k2|β|2

1 − k2

= |k2β − α|2

(1 − k2)2 − (|α|2 − k2|β|2)(1 − k2)
(1 − k2)2

= (k2β − α)(k2β − α) − (1 − k2)(|α|2 − k2|β|2)
(1 − k2)2

Expand the numerator:

N = k4|β|2 − k2βα − k2βα + |α|2 −
[
|α|2 − k2|β|2 − k2|α|2 + k4|β|2

]
= k4|β|2 − k2(βα + βα) + |α|2 − |α|2 + k2|β|2 + k2|α|2 − k4|β|2

= k2|β|2 + k2|α|2 − k2(βα + βα)
= k2 [

|α|2 + |β|2 − (αβ + αβ)
]

= k2|α − β|2

R2 = k2|α − β|2

(1 − k2)2

R = k|α − β|
|1 − k2|
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14. If one the vertices of the square circumscribing the circle |z − 1| =
√

2 is 2 +
√

3i. Find the other
vertices of the square.
Solution: The circle is |z − zc| = R, where zc = 1 is the center and R =

√
2 is the radius.

The square circumscribes the circle, so the center of the square is the center of the circle, zc = 1.
The distance from the center to each vertex is Rs, the half-diagonal.
Let zA = 2 +

√
3i be the given vertex. The distance Rs is |zA − zc|:

Rs = |(2 +
√

3i) − 1| = |1 +
√

3i| =
√

12 + (
√

3)2 =
√

4 = 2

The vertices of the square are z1, z2, z3, z4. The rotation angle between successive vertices about the
center zc is π

2 .
The rotation transformation around zc is z′ = zc + (z − zc)ei π

2 = zc + (z − zc)i.
zA − zc = (2 +

√
3i) − 1 = 1 +

√
3i.

The other vertices are found by rotating zA − zc by i, i2 = −1, and i3 = −i.
1. **Second vertex zB (Rotation by π

2 ):**

zB − zc = (zA − zc)i = (1 +
√

3i)i = i +
√

3i2 = −
√

3 + i

zB = zc + (−
√

3 + i) = 1 −
√

3 + i

2. **Third vertex zC (Rotation by π):**

zC − zc = (zA − zc)i2 = −(zA − zc) = −(1 +
√

3i) = −1 −
√

3i

zC = zc + (−1 −
√

3i) = 1 − 1 −
√

3i = −
√

3i

3. **Fourth vertex zD (Rotation by 3π
2 ):**

zD − zc = (zA − zc)i3 = −(zA − zc)i = −(−
√

3 + i) =
√

3 − i

zD = zc + (
√

3 − i) = 1 +
√

3 − i

The other vertices are 1 −
√

3 + i, −
√

3i, and 1 +
√

3 − i.
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