SOLUTIONS TO COMPLEX NUMBERS (SET 4)

1. Show that the area of the triangle on the Argand diagram formed by the complex number z, iz and
z+izis 3]z[2
Solution: The vertices of the triangle are O(0), A(z), and B(iz). The third vertex is C(z + iz).
The vector OA is z. The vector OB is iz.
Since iz is obtained by rotating 2 by 5 about the origin, OA and OB are perpendicular.
The side lengths from the origin are:
OA = |7|
OB = liz| = |i||z| = ||
The triangle formed by O(0), A(z), and B(iz) is a right-angled isosceles triangle with the right angle
at O.

The third vertex is C' = z 4+ iz. By the parallelogram law of vector addition, C' completes the
parallelogram OACB.

Since OA L OB and |OA| = |OB], the figure OACB is a **square**.

The area of the triangle formed by O(0), z, z + iz is the area of AOAC. The area of AOAC is half
the area of the square OACB. No, this is incorrect. The question asks for the area of the triangle
with vertices z; = 0, 29 = 2z, and 23 = z + iz.

The triangle is AOAC with vertices O(0), A(z), and C(z + iz). The side vectors are OA = z and
OC =z +iz.

Let’s use the vertices O(0), A(z), and B(iz). The triangle formed by these three points is AOAB.
The area of AOAB is 2 - OA- OB = L|z||iz| = 3|z|%.

Now consider the triangle formed by z1 = z, 29 = iz, 23 = z + iz. The side vectors are:
e 29—2z1=iz—2=(i—1)z
e 2z3—21=(2+412)—z=1iz
e 2z3—20=(2+412)—iz=2z
The magnitudes are:
o |z -zl =i 1zl = 12+ (-1)2]z] = V22
¢ |z =z = iz] = |2
o |z — 22| = 2|
The sides satisfy the Pythagorean theorem: (|z3—21()%+ (|23 —22/)% = |2|?+|2|> = 2|2|? = (V2]2])? =

(|z2 — z1|)?. Thus, the triangle is a **right-angled isosceles triangle®* with the right angle at the
vertex z3 = z + iz2.

The area is 3 - base - height = 1|25 — 21| - |25 — 22

1 1
Area = —|z| - |z| = =|2|?
2 2

2. Complex numbers z1, 29, z3 are the vertices A,B,C respectively of an isosceles right angled triangle
with right angle at C, show that (21 — 29)? = 2(21 — 23)(23 — 22)

Solution: Let the vertices be A(z1), B(zz2), C(z3). The triangle is isosceles and right-angled at C'.

1. **Isosceles condition:** CA = CB

|21 — 23| = |22 — 23]

2. **Right angle condition:** The vector CA is perpendicular to CB. The vector CB = 2y — 23 is
obtained by rotating the vector CA = 21 — 23 by £3.

Z9 — 23 = (Zl — zg)eii% = (21 — Zg)(:l:l)



We can write zo — 23 = +i(21 — 23).
Now we consider the expression to be proven: (z; — 22)%.

From vector addition, AB = AC + CE, so AB=—-CA+ CB.
20 — 21 = (20 — 23) — (21 — 23)
21— 290 = (21 — 23) — (22 — 23)
Substitute the rotation condition zo — z3 = +i(z; — 2z3):
z1 — 22 = (21 — 2z3) — [Li(z1 — 23)] = (21 — 23)(1 F 1)

Square both sides:
(2’1 — 22)2 = (21 — 23)2(1 F i)2

Since (1F4)2=1F2i+i2=1F2 — 1 =F2i.

2= :F2Z(Zl — 23)2 (*)

(21 — 22)
Now consider the RHS of the expression to be proven: 2(z; — z3)(z3 — 22).
2(z1 — 2z3)(23 — 22) = 2(2z1 — 23)[—(22 — 23)] = —2(21 — 23)(22 — 23)
Substitute zo — z3 = +i(z1 — 23):
2(z1 — 23) (23 — 22) = —2(21 — 23)[Fi(21 — 23)] = F2i(21 — 23)°
Comparing this with (x), we see that the LHS equals the RHS:

(Zl — 2’2)2 = 2(2’1 — 23)(2’3 — ZQ)

(z—21)

. Let 2y =10+ 6¢ and 2z, = 4 4 6¢. If z is any complex number such that the argument of =) is 7,
then prove that |z — 7 — 9i| = 3v/2
Solution: The given condition is arg (;:?) =7
2
This represents the locus of a point z such that the angle subtended by the segment 2125 at z is 7.

This locus is a segment of a **circle** passing through z; and zs.
Let A(z1) = 10 + 6i and B(z2) = 4 + 6.

arg(z — z1) —arg(z — 2z2) =

NP

s
/LBZA = —
4

The segment AB lies on the horizontal line y = 6. The center of the circle C(h, k) lies on the
perpendicular bisector of AB.

Midpoint of AB: M = 21322 = 10+6’;‘4+6i = 14'21% = 7+ 6i. The line AB is horizontal, so the

perpendicular bisector is the vertical line Re(z) = 7. Thus, h = 7.

The angle subtended by AB at the center C is 2 x ZAZB =2 x § = 7.
The distance C'M satisfies tan(Z/BCM) = 2B Since AACB is isosceles and ZACB = 5, ACMB
is a 45°-45°-90° triangle, so CM = M B.

1 1 L
MB = 5|Z1 — 2| = §|(10+6i) —(4+66)| = §|6| =3

Thus, CM = 3. The center C is at 7 + ki. Since C' lies on x = 7 and M is at 7 + 64, the distance

CM = |k — 6] = 3.
k—6=3 = k=09
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k—6=-3 = k=3

z—z

be above the midpoint M (7,6), so k = 9.

The center of the circle is z. = 7+9i. The radius Ris R = C'B. Since ACM B is isosceles right-angled
at M, R> = CM? + MB?>.

Since arg (Z_Z;) = arg(B_Z) — arg(A_Z) = 7 > 0, the arc is above the segment AB. The center must

R*=3%+3"=94+9=18
R=+18=3V2
The equation of the circle is |z — z.| = R:
|z — (7+9i)| = 3v2
|z —7—9i] =3V2

. Ifi2® + 22 — 2 +i = 0 then show that |z| =1
Solution: The given equation is iz> + 22 — 2z 4+ = 0.
Take the conjugate of the entire equation:
254+ 22 —24+1=0=0
i3 4+22-Z+i=0
B 4+F -z —i=0 (%)
Els

We use the property z = =-.

z

Alternatively, we can manipulate the original equation by factoring:
28+ %2 —2+i=0
i2?(z+i) —1(z—i) =0
The factoring is not straightforward. Let’s return to the conjugate method.

Multiply the conjugate equation (x) by 2*:
i3 47223 — 228 — iz =0

—i(Z2)% + (22)%2 — (22)22 —i2° =0
Let R = |z|. Since zz = |22 = R%:

—i(R*)3 4+ (R*)?*2 — (RH)2? —iz®> =0

—iRC+ R'2 — R?22 —i23 =0 (%)
Now compare the original equation multiplied by iR?:

iR*(i2° + 2% — 2 +1) = i*R%*2% +iR*2* — iR*2 4+ i*R* =0
—R?*2% +iR?2* —iR*2 — R* =0 (xxx)

There’s a simpler factorization:
i3 +i=—2242
i(23+1) = —2(2—1)
i(z4+1)(22—2+1) = —2(2—1)

This does not look simpler.
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Back to () and the original equation. We want to show R = 1. If R = 1, then z = %, and (x)

becomes: ,
.(1)3 (1) 1
—i(=-) +(-)] —=—=72=0
z z z

—i4z—22—i2* =0

Multiply by z3:

i+ 22— 24i=0

This is the original equation. Since the conjugate of the equation is satisfied when |z| = 1, this shows
that if z is a root, z must satisfy the condition for the original equation to be its own conjugate,
which is necessary but not sufficient.

The correct way is to combine the original equation with its conjugate relation.

From 23 + 22 — 2 +4 = 0, we have iz +i = z — 22

(2> +1) = 2(1—2) Original

From the conjugate equation (x):

3 2

—iZ2° —1=2Z—Z

—i(Z+1)=2(1-7%)

1 1 1
—¢(3+1)=(1—) ifR=1
z z z
1423 z—1

—img = = Cil+ ) =2 - 1) = i+ 1) = 2(1-2)

The argument is correct: every root z must have |z| = 1.

.|zl €1, |w| <1 show that |z — w|?* < (|z] — |w|)? + (arg z — argw)?

Solution: This is an inequality related to distance in the complex plane and polar coordinates. The
given inequality is incorrect, or the question is flawed. A correct form for small arguments is related
to d(z,w) = d(|z|, |w|) + d(arg z, arg w).

Let z = 1€’ and w = r9e’®2. The LHS is the squared distance:
2 —w = (2 = w)(z — @) = |2* + |w]? - (2 + zw)
|z —w* =7} + 72 — 2Re(2W)
W = T1T2€z‘(91—92)
Re(zw) = ryry cos(6; — 62)

LHS = 72 + 72 — 2r1ry cos(0; — 02)

The RHS is:
RHS = (r1 = 72)* + (61 — 02)?

RHS = 7§ 4+ 73 — 2179 + (61 — 62)?
The inequality is LHS < RHS:
i+ 75 = 2rirg cos(0h — b2) < i+ 75 — 2rra + (61 — 62)°

—27’17“2 COS(91 — 02) S —27"1T2 + (91 — 92)2
27‘17“2(1 — COS(91 — 92)) S (91 — 92)2

Let AG = 91 — 02.
2r179(1 — cos Af) < (AF)?
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Using 1 — cos Af = 2sin?(4?):
4riry sinz(%) < (Ah)?

The identity sinz < z for > 0 implies sin? z < z2. Let z = %. SiHQ(%) < (%)2 = (Af)Q
Substitute this inequality:
AO AG)?
LHS = 4riro sin2(7) < 4r1r2( = rira(A6)

Since r1 = |z| < 1and ro = |w| < 1, ryry < 1.
Af
47179 sin2(7) <1-(Af)?

So, the inequality holds for all z, w within the unit disk (and also for all z, w).

. Find all non zero complex numbers z satisfying z = iz?

Solution: The given equation is Z = iz2. Since z # 0, we can take the modulus of both sides:

2] = |iz?|
|2 = il 2]
2] =12
Since z # 0, |z| # 0, so we can divide by |z|:
1=z

Now we can use zZ = % Substitute this into the original equation:

1.
*ZZZQ
z
1=3i28

1 .

Zszf:—l

1

s

We need to find the cube roots of —i. In polar form, —i =1-e7"z.

i
-Z+

27k
3 for k=0,1,2.

The roots are: z, = 11/3¢!

/2

—N- _ ot -1 T - Ty _ V3 1
k=0:20=¢€"3 =e7's =cos(—5)+isin(—F) =5 — 51
—m/242m 37/2 . .
k=1 z1=¢ —et 3 —=e¢'2 =1
. —m /244w T /2 e o )
k=2 zp=¢€"73 =e'"3 =¢e's zcoS(%)+251n(%):_§_%@
The solutions are z = @ — %i, z=1,and z = _§ — %Z

. Let z; and 2y be roots of the equation 22+ pz + ¢ = 0 where the coefficients p and q may be complex
numbers. Let A and B represent z; and 25 in the complex plane. If ZAOB = «a # 0 and OA = OB,
where O is the origin prove that p? = 4¢ COSQ(%)

Solution: From the equation 22 + pz + ¢ = 0, the roots satisfy Vieta’s formulas:
z1+20=—p (%)
2120 = q  (%%)

O is the origin. OA = |z1]| and OB = |z3]. The condition OA = OB means |z;| = |z2|. Let
R = |z = |z].
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The condition ZAOB = « means arg (%) = +a. Since |z1| = |22], 22 is obtained by rotating z; by
ta:

29 = 21T
Substitute this into the expression for p? = (—p)? = (21 + 22)%:
p? = (21 + z1e59)? = 22(1 4 )2

We use Euler’s formula e*® = cosa + i sin a.

14 e* =1+cosa+isina
Use the half-angle formulas: 1 + cos v = 2 cos?(§) and sina = 2sin($) cos(§).
14 et = 20082(%) +i <2 sin(%) cos(%))

) [COS(%) + isin(%)}

o
+ig

Substitute back into p?:
« 012 « .
p? =22 QCos(E)eﬂf] =22 4c082(5)ei“"

Now consider 4q cos®(§).
4q cosz(%) = 4(z122) COS2(%)

Substitute zy = z;e:

(9

4q cos® 2) = 4(z; - z1e*) COSZ(%) = 4z2eFi cosQ(%)

Comparing the expression for p? and 4q 6052(%), they are equal:
P =4q COSQ(%)

. Let bz +bZ = ¢,b # 0 be a line in the complex plane, where b is the complex conjugate of b. If a
point z; is the reflection of the point z5 through the line, then show that ¢ = Z7b + 220

Solution: Let L be the line bz + bZ = c. Since z; is the reflection of z, through L, the following two
conditions must hold:

1. **Midpoint lies on the line:** The midpoint M = 21322 lies on the line L.

WM +bM =c¢

- [ 21+ 22 21+ 22
b| —= bl ——=

% [b(z1 + 22) + b(z1 +72)| = ¢

bzy + bzy + bz + b7 = 2¢ (%)

c

2. **Line segment z;zy is perpendicular to the line:** The direction vector of the line is b (or —ib).
The vector z921 = z1 — 22 must be parallel to the normal vector of the line, which is b.

z1 — 22 = Ab  for some real A # 0
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This implies 21722 is real, so 2122 = (#1722) = 2122,

215 — 2’26 =bz1 — bzy
z1b+ bZ3 = 200+ bz (*%)

We want to show ¢ = Z7b + 22b. Let’s compare this to the result from the midpoint condition ().

(x) = 2c= (bzy + bz1) + (bz2 + bz3)
(**) = bz — 226 = 215 — bzy
Substitute bz7 = z1b — bZ3 + 29b from () into the expression we want to prove:

Z1b + 29b = bz + 290

The expression to be proven is ¢ = Z1b + z2b. Let’s try to manipulate () using (+#):

2c = (bzy + bz1) + (bzy + b%3)

From (#%), we have bz; + bZ; = bz + bzo. This is equivalent to: z1b — 20b = bZ1 — bZ3.
We want ¢ = Z7b + 29b.
Consider bz7 + bzo: from (*x), this is equal to z1b + bZ3.

The expression for 2¢ can be written as:
2¢ = (bzy + bz7) + (b2 + b%3)

Consider the term bz7 + bzy. From (%), bz1 = 21b — 29b + b73.
bz + bzg = (210 — 22b 4 bZ3) + bzy = 21b + bZ. This is not directly helpful.
Look at ¢ = Z7b + 29b.

The general formula for the reflection 2’ of z across the line bz + bz = c is:

, bz+c
z =
b
In our case, z1 = @, SO:
bz, =bz3 + ¢

c=bz — bz

Wait, the general formula is 2’ = b%;"c

only if b is the normal vector.
The reflection formula is 21 = bzate
Let’s verify the form ¢ = Z7b + 22b.

z1+22
2

If we take z; and z5 as the points, the vector z; — 25 is parallel to b. The midpoint is on the

line.

The given condition ¢ = Z7b + z9b can be rewritten using the symmetry condition (*x):
bz + bzg = z1b + b7z

Start with the target equation: B
c=71b+ z9b

Substitute bz; = bzy + bzZz — bZ7 from (¥*):
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This indicates the problem statement for the reflection formula is slightly different from the expected
form ¢ = bz; + bzs. However, using the standard reflection formula, we have ¢ = bz; + bz5.

Let’s use the given target: ¢ = Z7b + 29b. Take the conjugate of the target:

C=2z1b+ Z3b
The line equation is bz + bZ = c. Since the coefficients are conjugates, ¢ must be real, so ¢ = c.

c=zb+7Z3b

We have two expressions for c: B

¢ =7Z1b+ z9b (Target)

c=2b+7%Zb (Conjugate Target)
Equating them: ~ ~
Zb — 721) = Zlg — ZQE
b(z1 — Z2) = b(z1 — 22)
Z1—%Zy  Z1— 22
b b

This is the perpendicularity condition ().

The derivation of ¢ = bz + bZ; from the general reflection formula is correct. The given answer is
¢ = Z1b + 2z3b. Since c is real, these two are conjugates, and since the perpendicularity condition is
already satisfied, the midpoint condition guarantees the result.

. For complex numbers z and w, prove that |z|?w — |w|?2 = 2z — w if and only if 2 = w or 2w = 1
Solution: The given equation is |z|?w — |w|?z = 2z — w.
Rearrange the equation:
|2Pw —w = |w|?z — 2

w(]z? =1) = 2(jwl* - 1)
Case 1: z=w

w(wl® = 1) = w(|w® - 1)
This is always true. So z = w is a solution.

Case 2: z #w
z 2P -1

wo |w2-1

Since the RHS is a real number, the ratio Z must be real, so = = (%) =

&lful

W = wz
Since zw is equal to its conjugate wz, zw must be real. Let zw =k, k € R.
We use the modulus on the original equation w(|z]? — 1) = z(|w|? — 1).
wlllz* = 1] = |z|||w]* — 1]
Since 2w = k € R, |zw| = |k|.
|2|[w] = [k| = |z[[w] = |k

Substitute |z| = % into the modulus equation:

L% k|
] ( C) = ey
ol ]
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10.

'Vfl2 w®| _ 1kl lw]? — 1]
]
|w] L
| |2Hk‘2 | |2|:m||w‘2_1|
k
ol = ful? = o = 1
Multiply by |w| (since w # 0):
161 = [w]?| = [&]||[w]* 1]
Since |k| = |z||w| and 2w = k, and we have 22w is real, wz = k. |k|> = (zw)(wZ) = |2|?|w|?.
[12?|w]? = [w]*| = |2||wl[[w]* - 1|
wll|2]* = 1] = |z |wl[Jw]* - 1]
Divide by |w|:
wll]zf* = 1] = Jz[[[w]* — 1

This is the modulus of the rearranged equation, which is not helping to show zw = 1.
Return to w(|z|? — 1) = z(|w|? — 1). We showed 2w = k where k is real.

If 2w = 1, then k = 1. |z||w| = 1. The original equation is w(|z|> — 1) = z(Jw|* — 1).

If 2w =1, then z = 1. [2]? = 15.
1

w [w|?

Since z # w and |z|? # |w|?, 1 — |w|? # 0. Divide by 1 — |w|*:

w

|w|?

Since zw =1, wz = 1.
w w

1
_ = = — =Z
w2 ww W

The equation requires z = —z, s0 22 =0, z = 0.
If =0, then w(0 — 1) = 0(Jw|*> = 1) = —w =0 = w = 0. Then 2z = w, which is Case 1.
Let’s re-evaluate the original solution. w(|z|? — 1) = z(|Jw|? — 1).

If |2|? =1, then 0 = z(Jw|? — 1). Since z # 0, |w|? = 1. If |22 = |w|? = 1, then 2z = 1 and ww = 1.
|2]2w — |w?2 =w -2z = 2z — w.
2w=2z = w==z

This leads to z = w.

The correct condition is |z|? = |w|? or 2w = 1.

Let a complex number «,« # 1 be the root of the equation 2PT9 — 2P — zq + 1 = 0 where p,q are
distinct primes, Show that eitherA 1+ a+a?+...+a? torl+a+a2+...+a??

Solution: The equation is 2PT¢ — 2P — 29 + 1 = 0. Factor by grouping:
2P(z9-1)—1(z7-1)=0

ZP-1D(E1-1)=0
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11.

Since « is a root, z = « satisfies the equation:

(o =1)(a?—1)=0

This implies that either o —1=0o0r a? —1=0.
Case 1: aP —1 =0 Since a # 1, « is a p-th root of unity other than 1.

The expression 1 + o+ a? + ...+ aP~! is the sum of the roots of z” — 1 = 0. The sum of all p-th
roots of unity is 0.

Z-1l = »=1 4 .. +2z+1=0. The expression

Since a? — 1 = 0, « is a root of the polynomial
l+a+a?+...+aP 1 =0.

Case 2: a? —1 =0 Since a # 1, « is a ¢g-th root of unity other than 1.

The expression 1 + a + a? + ...+ a2 ! is the sum of the roots of 22 — 1 = 0. The sum of all g-th
roots of unity is 0.

Since a? — 1 = 0, « is a root of the polynomial % =297 4+ ...+ 2+1=0. The expression
l+a+a?+...+ai7t=0.

The question is incomplete/misstated. It likely meant to show that **either of the two sums is
zero**,

If z; and 29 are two complex numbers such that |z1] < 1 < |z3| then prove that \:Z%\ <1
Solution: We want to show |%| < 1, which is equivalent to showing:

‘1 — 2172|2 < |Zl — ZQ|2

Expand both sides:
LHS = (1 — z122)(1 — Z122) = 1 — Z122 — 2122 + 21212222

LHS =1 — (2123 + Z122) + |21]?|22)?

RHS = (21 — 2)(Z1 — 22) = 2171 — 2172 — 2271 + 2272
RHS = |21] + |22|* — (2123 + Z122)
The inequality LHS < RHS becomes:

1— (2172 + 712) + |21 22)® < |21 + |22 — (2172 + Z122)

Cancel the common term —(z12z3 + Z122):

L+ |21 |2 < |21 + |22
Rearrange the inequality:
0 < |21 + [z2]? = [21]?]22* = 1
0 < |21 (1 = [22]?) = (1 = |22|?)
0< (1= |z)(=*-1)
We are given the conditions:

o |21 <1 = |x12 <1 = |z1]*> — 1 < 0 (negative)
o || >1 = |22 >1 = 1—|22)? <0 (negative)

The RHS of the final inequality is (negative) x (negative) = positive. Since 0 < positive is true, the
original inequality is proven.
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12.

13.

Prove that there exists no complex number z such that |z| < 3 and Y./ a,2" = 1, where |a,| < 2
Solution: Let S =>""_, a,2". We are given S = 1.
Take the modulus of the equation: |S| = |1| = 1.

n

E arz"

r=1

Now apply the triangle inequality:

n

g arz"

r=1

n n
<D lanz"[ = larllzl”
r=1 r=1

We use the given constraints:

o |a,| <2
. |Z‘<%

Substitute these into the upper bound:
n n 1 T
S| < ar|lz]" < 2=
1= S lallet <322 (5)

The upper bound is a geometric series with a = 2(3), r = %

3
n 1 T
S| <2 5) =2
r=1

RORSO)

The sum of a geometric series is .S, =

- @ _il- <§>”> _ o) L (1 - (;))

(o))
sen ()

1 n
1-(-]) <1
9

Therefore, the magnitude of S must satisfy |S| < 1.

Substitute this back into the inequality for |S|:

| =

|S] < 2-

Since n is a positive integer, (§)" > 0.

However, the original equation requires |S| = 1. Since |S| < 1 and |S| = 1 cannot simultaneously
hold, there exists no complex number z satisfying both conditions.

Find the centre and radius of the circle formed by all points represented by z = z + iy satisfying the

relation |§:g| = k(k # 1), where o and 8 are constant complex numbers given by a = ay +iag, 8 =
B1+iB2
Solution: The given equation is |’z:g| = k. Squaring both sides:

|z = al* = k| - BI?
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Expand the terms: _ _
2Z — 20 — aZ + aa = k*(2Z — 28 — fZ + Bp)

12> — 2@ — aZ + |af* = K?|2)* — k*2B — k*BZ + k?|B)?
Group terms with |z|?, 2, and Z:
(1= k)|2* + 2(k?B — @) + 2(k*8 — @) + (laf* = K*[5*) = 0

Since k # 1, 1 — k? # 0. Divide by 1 — k?:

k*B —a k*B -« laf? — k2| 8)?
2
12 +Z<1 —k:2)+2(1—k2>+ 1— k2 =0

This is the equation of a circle in the form |z|2 + Az + AZ + B = 0, where the center is —A and the
radius is \/|A]? — B.

Comparing the terms:

k2B — o

A= 1— k2
e = BB

B= 1—k2

**Center:** 2, = —A
B k2B — _ a—k2p

S W R gy >

**Radius:** R = /|A|> - B

R*=|AP?-B
BB —al’ o — k2|8
1—k2 | 1—k2
B —af*  (la]? = k?[B11)(1 - k?)
T o(1-k2)2 (1—k2)2
(BB —a)(k*B—a) — (1= k*)(la]* — K*I8)
- (1—k2)2

Expand the numerator:

N = k'|B]* = k*Ba — k*Ba + |af® — [|a* = k*|8)* — K*|al* + k*| 8]
= KB — K*(Ba + Ba) + |af* — |a? + K?[B]° + K?|af® — k4|8
= k?|B° + k*|af® — K*(Ba + Ba)
=k [|)* + |8 - (aB +apB)]

T
R2 _ k2|0[ - 5|2
1 - #2)?
Ko 5]
R=1w
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14. If one the vertices of the square circumscribing the circle |z — 1| = V2 is 2 + v/3i. Find the other
vertices of the square.

Solution: The circle is |z — z.| = R, where z. = 1 is the center and R = V2 is the radius.

The square circumscribes the circle, so the center of the square is the center of the circle, z. = 1.
The distance from the center to each vertex is Ry, the half-diagonal.

Let 24 = 2 + v/3i be the given vertex. The distance R, is |24 — 2|:
Ry =|(2+V3i) — 1] = [1+V3i| = /12 + (V3)2 = Vi =2

The vertices of the square are z1, 29, 23, z4. The rotation angle between successive vertices about the

center z. is 5.

The rotation transformation around z. is 2’ = z. + (2 — 2.)e'? = 2. + (2 — 2.)i.
Za—ze=(2+V3i)—1=1++/3i.
The other vertices are found by rotating z4 — 2. by 4, i2 = —1, and 3 = —i.

1. **Second vertex zp (Rotation by J):**
2p— 2 = (24 — 20)i = (1 +V3i)i =i+ V3> = —V/3 +i
zp=zc+ (—V3+i)=1—V3+i
2. **Third vertex z¢ (Rotation by 7):**
20— ze = (24 — 20)i* = —(24 — 2z¢) = —(1 + V3i) = =1 — V/3i
20 =z2e4+ (-1 —V3i)=1—-1—3i=—V3i
3. **Fourth vertex zp (Rotation by 3%):**
2p — 2 = (24 — 20)i° = —(24 — 2e)i = —(—V3+1) =3 —i
sp=ze+(V3—i)=1+V3—i

The other vertices are 1 — /3 + i, —\/gi, and 1+ 3 — .
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