Binomial Theorem - Set 3

1. The term independent of x in expansion of

$$(\frac{x+1}{x^{\frac{2}{3}}-x^{\frac{1}{3}}+1}-\frac{x-1}{x-x^{\frac{1}{2}}})^{10}$$

is

- (a) 4
- (b) 120
- (c) 210
- (d) 310

[Ans. c]

- 2. Let T_n denote the number of triangles which can be formed using the vertices of a regular polygon of n sides. If $T_{n+1} T_n = 21$, then n equals:
 - (a) 5
 - (b) 7
 - (c) 6
 - (d) 4

[Ans. b]

- 3. The sum $\sum_{i=0}^{m} (C_i^{10})(C_{m-i}^{20})$ where $(C_q^p)=0$ if p>q. is maximum when m is:
 - (a) 5
 - (b) 10
 - (c) 15
 - (d) 20

[Ans. c]

4. ASSERTION AND REASON

This question contains STATEMENT -1 (Assertion) and STATEMENT - II (Reason).

STATEMENT - I:
$$\sum_{r=0}^{n} (r+1)^n C_r = (n+2)2^{n-1}$$

STATEMENT - II: $\sum_{r=0}^{n} (r+1)^n C_r x^r = (1+x)^n + nx(1+x)^{n-1}$

- (a) Statement I is True, Statement II is True. Statement II is a correct explanation of for statement I.
- (b) Statement I is True, Statement II is True. Statement II is NOT a correct explanation of for statement I.
- (c) Statement I is True, Statement II is FALSE .
- (d) Statement I is False, Statement II is TRUE.
- 5. If x^p occurs in the expansion of $(x^2 + \frac{1}{x})^{2n}$, prove that its coefficient is

$$\frac{(2n)!}{\left(\frac{1}{3}(4n-p)\right)!\left(\frac{1}{3}(2n+p)\right)!}$$

- 6. Remainder when $8^{2n} 62^{2n+1}$ is divided by 9:
 - (a) 0

- (b) 2
- (c) 7
- (d) 8

[Ans. 2]

- 7. Total number of terms in $(x+y)^{100} + (x-y)^{100}$ after simplification:
 - (a) 51
 - (b) 202
 - (c) 100
 - (d) 50

[Ans. 51]

- 8. If in $(1+x)^n = 1 + a_1x + a_2x^2 + \cdots$, a_1, a_2, a_3 in A.P., then n = 7.
- 9. Find $\frac{a}{b}$ if in $(a-2b)^n$, 5th + 6th terms = 0. [Ans. $\frac{2(n-4)}{5}$]
- 10. If |x| < 1, coefficient of x^6 in $(1 + x + x^2)^{-3}$:
 - (a) 3
 - (b) 6
 - (c) 9
 - (d) 12
 - (e) 15

[Ans. a]

- 11. If $(1+2x+x^2)^5 = \sum_{k=0}^{15} a_k x^k$, then $\sum_{k=0}^7 a_{2k}$:
 - (a) 128
 - (b) 256
 - (c) 512
 - (d) 1024

[Ans. c]

- 12. $49^n + 16n 1$ is divisible by:
 - (a) 3
 - (b) 29
 - (c) 19
 - (d) 64

[Ans. d]

13. If a_1, a_2, a_3, a_4 are consecutive binomial coefficients in $(1+x)^n$, then:

$$\frac{a_1}{a_1+a_2} + \frac{a_2}{a_3+a_4} =$$

- (a) $\frac{a_2}{a_2+a_3}$
- (b) $\frac{1}{2} \frac{a_2}{a_2 + a_3}$
- (c) $\frac{2a_2}{a_2+a_3}$
- (d) $\frac{2a_3}{a_2+a_3}$

[Ans. c]

- 14. Greatest integer dividing $101^{100} 1$:
 - (a) 100
 - (b) 1000
 - (c) 10000
 - (d) 100000

[Ans. c]

15. Let n be odd. If

$$\sin^n \theta = \sum_{r=0}^n b_r \sin^r \theta,$$

then:

- (a) $b_0 = 1, b_1 = 3$
- (b) $b_0 = 0, b_1 = n$
- (c) $b_0 = -1, b_1 = n$
- (d) $b_0 = 0, b_1 = n^2 3n + 3$

[Ans. b]

16. If

$$\frac{1}{(1-ax)(1-bx)} = \sum_{n=0}^{\infty} a_n x^n,$$

then

$$a_n = \frac{b^{n+1} - a^{n+1}}{b - a}.$$

17. Value of x for which 6th term of

$$\left[2^{\log_2\sqrt{9^{x-1}+7}} + \frac{1}{2^{\frac{1}{5}\log_2(3^{x-1})} + 1}\right]^5$$

is 84:

- (a) 4
- (b) 3
- (c) 2
- (d) 5

[Ans. c]