SETS, RELATIONS & FUNCTIONS - SET 2

- 1. If $A = \{x : x^2 = 1\}$, $B = \{x : x^4 = 1\}$, then $A \triangle B$ is equal to
 - (a) $\{i, -i\}$
 - (b) $\{-1,1\}$
 - (c) $\{-1, 1, i, -i\}$
 - (d) none of these
- 2. If $A \subseteq B$, then $A \triangle B$ is equal to :
 - (a) $(A B) \cap (B A)$
 - (b) A-B
 - (c) B-A
 - (d) none of these
- 3. $(A \cap B)^c \cap A$ is equal to
 - (a) B
 - (b) $A \cap B$
 - (c) A B
 - (d) A-B
- 4. $A (B \cap C)$ is equal to
 - (a) $(A B) \cap (A C)$
 - (b) $(A B) \cup (A C)$
 - (c) $(A \cap B) C$
 - (d) none of these
- 5. If $A = \{1, 2, 3\}$ and $B = \{3, 4\}$, then $(A \cup B) \times (A \cap B)$ is
 - (a) $\{3,3\}$
 - (b) $\{(1,3)(2,3)(3,3)(1,4)(2,4)(3,4)\}$
 - (c) $\{(1,3)(2,3)(3,3)\}$
 - (d) $\{(1,3)(2,3)(3,3)(4,3)\}$
- 6. If $A = \{x : x = n^2, n = 1, 2, 3\}$, then number of proper subsets
 - (a) 3
 - (D) 8
 - (c) 7
 - (d) none of these
- 7. Let R and S be two relations on a set A. Then which is not correct
 - (a) R and S are transitive, then $R \cup S$ is also transitive
 - (b) R and S are transitive, then $R \cap S$ is also transitive
 - (c) R and S are reflexive, then $R \cap S$ is also reflexive
 - (d) R and S are symmetric, then $R \cup S$ is also symmetric

- 8. In a battle 70% of the combatants lost one eye, 80% an ear, 75% an arm, 85% a leg, x% lost all the four limbs. The minimum value of x is
 - (a) 10
 - (b) 15
 - (c) 12
 - (d) none
- 9. Which of the four statements given below, is different from the other
 - (a) f: $A \to B$
 - (b) $f: x \to f(x)$
 - (c) f is a mapping from A to B
 - (d) f is a function from A to B
- 10. Solution set of $x \equiv 3 \pmod{7}, p \in I$ is given by
 - (a) 3
 - (b) $\{7p 3 : p \in I\}$
 - (c) $\{7p+3: p \in I\}$
 - (d) none of these
- 11. If m elements are in set A and n elements are in set B, then number of elements in set A X B is
 - (a) m
 - (b) n
 - (c) mn
 - (d) less than mn
- 12. Let R and S be two relations on a set A. Then
 - (a) R and S are transitive, then $R \cup S$ is also transitive
 - (b) R and S are reflexive, then $R \cup S$ is equivalence
 - (c) R and S are symmetric, then $R \cup S$ is equivalence
 - (d) R and S are reflexive, then $R \cup S$ is reflexive
- 13. The relation R from A = $\{11, 12, 13\}$ to $\{B = 8, 10, 12\}$ defined by y = x-1 is
 - (a) $\{(11,10)(13,12)\}$
 - (b) $\{(10,11)(12,13)\}$
 - (c) $\{(10,11)(12,13)(13,12)\}$
 - (d) none
- 14. If $A = \{(x,y) : y = e^x, x \in R\} \& B = \{(x,y) : y = e^{-x}, x \in R\}$, then $A \cap B$ is :
 - (a) empty set
 - (b) singleton set
 - (c) not a set
 - (d) none of these

- 15. Two finite sets A and B having m and n elements. The total number of relations A to B is 64, then possible values of m and n are:
 - (a) 2 and 4
 - (b) 2 and 3
 - (c) 2 and 1
 - (d) 64 and 1
- 16. If $f(x) = 64x^3 + \frac{1}{x^3}$ and a,b are the roots of $4x + \frac{1}{x} = 3$, then
 - (a) f(a) = f(b)
 - (b) f(b) = 11
 - (c) f(a) = 12
 - (d) none of these
- 17. The distinct linear function(s) which map(s) [-1,1] onto [0,2] is (are)
 - (a) x + 1, x 1
 - (b) x + 1, -x + 1
 - (c) -x+1
 - (d) x+1, -x-1

SET 2 - COMPREHENSION AND MATRIX MATCH

For problems 1 - 3: Consider the function f(x) satisfying the identity $f(x) + f(\frac{x-1}{x}) = 1 + x, \forall x \in \mathbb{R}$ $R - \{0, 1\}$ and g(x) = 2f(x) - x + 1

- 1. The domain of $y = \sqrt{g(x)}$ is
 - (a) $\left(-\infty, \frac{1-\sqrt{5}}{2}\right] \cup \left[1, \frac{1+\sqrt{5}}{2}\right]$
 - (b) $\left(-\infty, \frac{1+\sqrt{5}}{3}\right] \cup \left[1, \frac{1+\sqrt{5}}{2}\right]$
 - (c) $\left(-\infty, \frac{1-\sqrt{3}}{2}\right] \cup \left[1, \frac{1+\sqrt{3}}{2}\right]$
 - (d) $(-\infty, -1) \cup (1, \infty)$
- 2. The range of y = g(x) is $(a) (-\infty, 5]$ $(b) (-\infty, 1] \cup [5, \infty)$

 - (c) $(-\infty, 1]$
- 3. The number of roots of the equation g(x) = 1 is
 - (a) 0
 - (b) 1
 - (c) 2
 - (d) 3

	Column I : Function	Column II: Values of x for which both the functions in any option of the column I are identical
	(a) $f(x) = tan^{-1}(\frac{2x}{1-x^2}), g(x) =$	(p) $x \in \{-1,1\}$
	$2tan^{-1}x$	
	(b) $f(x) = \sin^{-1}(\sin x)$ and	(q) $x \in [-1, 1]$
4.	$g(x) = \sin(\sin^{-1}x)$	
	(c) $f(x) = log_{x^2} 25$ and $g(x) =$	(r) $x \in (-1,1)$
	$log_x 5$	
	(d) $f(x) = sec^{-1}x + cosec^{-1}x, g(x) = sin^{-1}x + cosec^{-1}x$	(s) $x \in (0,1)$
	$cosec^{-1}x, g(x) = sin^{-1}x +$	
	$\cos^{-1}x$	

- 5. Let $f(x) = 3x^2 7x + c$ where c is a variable coefficient and $x > \frac{7}{6}$ Then the value of [c] such that f(x) touches $f^{-1}(x)$ is (where [.] represents greatest integer function)
- 6. The domain of definition of the function $y = \frac{1}{\log_{10}(1-x)} + \sqrt{x+2}$ is equal to :
 - (a) (-3, -2) excluding -2.5
 - (b) [0,1] excluding 0.5
 - (c) (-2,1) excluding 0
 - (d) none of these
- 7. Let $f:(0,\infty)\to R$ and $F(x)=\int_0^x f(t)dt$. If $f(x^2)=x^2(1+x)$ then f(4) equals
 - (a) $\frac{5}{4}$
 - (b) 7
 - (c) 4
 - (d) 2