SOLUTIONS: SETS, RELATIONS & FUNCTIONS - SET 2

Multiple choice questions (detailed solutions)

1. $A = \{x : x^2 = 1\} = \{\pm 1\}, \quad B = \{x : x^4 = 1\} = \{\pm 1, \pm i\}.$

The symmetric difference $A \triangle B = (A \setminus B) \cup (B \setminus A)$ consists of elements in exactly one of the sets. Since $\pm 1 \in A \cap B$, the elements left are $\{i, -i\}$.

Answer: [i, -i].

2. If $A \subseteq B$ then $A \setminus B = \emptyset$ and

$$A \triangle B = (A \setminus B) \cup (B \setminus A) = B \setminus A.$$

So B-A.

- 3. $(A \cap B)^c \cap A = A \setminus (A \cap B) = A \setminus B$. So A - B.
- 4. Using De Morgan:

$$A - (B \cap C) = A \cap (B \cap C)^c = A \cap (B^c \cup C^c) = (A - B) \cup (A - C).$$

So
$$(A-B) \cup (A-C)$$

5. $A \cup B = \{1, 2, 3, 4\}, A \cap B = \{3\}.$ Thus

$$(A \cup B) \times (A \cap B) = \{(1,3), (2,3), (3,3), (4,3)\}.$$

Answer: $\{(1,3),(2,3),(3,3),(4,3)\}$

6. $A = \{1, 4, 9\}$ has 3 elements. Number of proper subsets $= 2^3 - 1 = 7$.

Answer: 7

- 7. Which statement is *not* correct? The union of two transitive relations need not be transitive (a simple counterexample exists). Hence the statement "R and S transitive $\implies R \cup S$ transitive" is false. So the incorrect statement is option (a).
- 8. By the general lower bound (inclusion principle), for k properties the minimum percentage losing all k is

$$\max (0, \sum p_i - (k-1) \cdot 100).$$

Here $\sum p_i = 70 + 80 + 75 + 85 = 310$, k = 4, so minimum = $310 - 3 \cdot 100 = 10$. Answer: 10%.

9. The first, third and fourth options describe a function/mapping with domain and codomain; the notation " $f: x \mapsto f(x)$ " is simply a rule and does not by itself specify domain and codomain. Thus option (b) is the one that is different.

1

- 10. The complete solution set of the congruence $x \equiv 3 \pmod{7}$ is $\{7p+3 : p \in \mathbb{Z}\}$. So $\{7p+3 : p \in \mathbb{Z}\}$.
- 11. |A| = m, $|B| = n \Rightarrow |A \times B| = mn$. Answer: \boxed{mn} .
- 12. Of the listed options, only (d) is always true: if R and S are reflexive then $R \cup S$ is reflexive. The other statements (about unions being transitive or unions being equivalence) need not hold.
- 13. Relation defined by y = x 1. For $x \in A$ we check if $y \in B$:

$$11 \mapsto 10 \ (\in B), \quad 12 \mapsto 11 \ (\notin B), \quad 13 \mapsto 12 \ (\in B).$$

Hence $R = \{(11, 10), (13, 12)\}.$

- 14. Solve $e^x = e^{-x} \Rightarrow e^{2x} = 1 \Rightarrow x = 0$. Then $y = e^0 = 1$. So $A \cap B = \{(0,1)\}$ (a singleton).
- 15. Number of relations from A (size m) to B (size n) is 2^{mn} . Given $2^{mn} = 64 = 2^6$ so mn = 6. From the options the pair (m, n) = (2, 3) fits.
- 16. Let a, b be roots of $4x + \frac{1}{x} = 3$. Put $p = 4x + \frac{1}{x} = 3$. Then

$$p^{3} = (4x)^{3} + \frac{1}{x^{3}} + 3 \cdot (4x)^{2} \frac{1}{x} + 3 \cdot (4x) \frac{1}{x^{2}}.$$

Simplifying the mixed terms gives 48x + 12/x = 12(4x + 1/x) = 12p = 36. Thus

$$p^{3} = f(x) + 36,$$
 $f(x) = (4x)^{3} + \frac{1}{x^{3}}.$

With p = 3 we get $f(x) = 3^3 - 36 = 27 - 36 = -9$. Hence f(a) = f(b) = -9, so option (a) is correct.

17. Linear maps that send the interval [-1,1] onto [0,2] must send endpoints to endpoints (either preserving or swapping). Solving the two possibilities yields

$$f(x) = x + 1$$
 and $f(x) = -x + 1$.

So both maps listed in option (b) are valid.

SET 2 - Comprehension and matrix match (solutions)

Given: For all $x \in \mathbb{R} \setminus \{0, 1\}$,

$$f(x) + f\left(\frac{x-1}{x}\right) = 1 + x,$$
 $g(x) = 2f(x) - x + 1.$

(1) We first solve for f. Let $\phi(x) = \frac{x-1}{x}$. Note the three-term system obtained by replacing x by x, $\phi(x)$, $\phi^2(x)$ gives a linear system for A = f(x), $B = f(\phi(x))$, $C = f(\phi^2(x))$:

$$A + B = 1 + x,$$

 $B + C = 1 + \phi(x),$
 $C + A = 1 + \phi^{2}(x).$

Solving (add (1)+(3)-(2)) yields

$$f(x) = \frac{1}{2} (1 + x + \phi^{2}(x) - \phi(x)).$$

Now $\phi(x) = 1 - \frac{1}{x}$, $\phi^2(x) = -\frac{1}{x-1}$. Hence

$$f(x) = \frac{1}{2} \left(x + \frac{1}{x} - \frac{1}{x-1} \right).$$

Therefore

$$g(x) = 2f(x) - x + 1 = 1 + \frac{1}{x} - \frac{1}{x-1} = 1 - \frac{1}{x(x-1)}.$$

The domain of $\sqrt{g(x)}$ requires $g(x) \ge 0$ and $x \ne 0, 1$. Solving

$$1 - \frac{1}{x(x-1)} \ge 0 \iff \frac{x(x-1) - 1}{x(x-1)} \ge 0,$$

which is equivalent to x(x-1) < 0 or $x(x-1) \ge 1$. Thus

$$x \in (0,1) \cup \left(-\infty, \frac{1-\sqrt{5}}{2}\right] \cup \left[\frac{1+\sqrt{5}}{2}, \infty\right), \quad x \neq 0, 1.$$

This set *does not* match any of the four printed options exactly, so the correct choice is: none of the given options

(2) Range of g(x). Put $y = g(x) = 1 - \frac{1}{x(x-1)}$. For $y \neq 1$ we can solve for x; discriminant analysis gives that real solutions exist precisely when y < 1 or $y \geq 5$. Hence the range is

$$\boxed{(-\infty,1) \cup [5,\infty)}$$

This corresponds to option (b).

- (3) Number of roots of g(x) = 1. Setting g(x) = 1 gives $1 \frac{1}{x(x-1)} = 1 \Rightarrow \frac{1}{x(x-1)} = 0$ which has no solution. Therefore there are $\boxed{0}$ roots.
- (4) Matching table (Column I \leftrightarrow Column II):
 - (a) $\tan^{-1}\left(\frac{2x}{1-x^2}\right) = 2\tan^{-1}x$ holds for |x| < 1. So (a) \mapsto (r).
 - (b) $\sin^{-1}(\sin x) = x$ and $\sin(\sin^{-1} x) = x$ are both identical on $x \in [-1, 1]$ (note $[-1, 1] \subset [-\frac{\pi}{2}, \frac{\pi}{2}]$). So (b) \mapsto (q).
 - (c) $\log_{x^2} 25 = \frac{\ln 25}{\ln x^2} = \frac{\ln 5}{\ln x} = \log_x 5$ for $x > 0, x \neq 1$. The interval given in Column II that fits is (0,1), so (c) \mapsto (s).

• (d) The pair is identical only at the special points $x = \pm 1$ (principal-value conventions), so (d) \mapsto (p).

(Thus the matches are: (a) r, (b) q, (c) s, (d) p.)

(5) Let $f(x) = 3x^2 - 7x + c$. If the graph of f touches the graph of its inverse f^{-1} at some point a, then f(a) = a and $f'(a) = \pm 1$.

From f'(x) = 6x - 7 the viable solution with x > 7/6 is $6a - 7 = 1 \Rightarrow a = \frac{4}{3}$. Using f(a) = a we get

$$3a^2 - 7a + c = a \Rightarrow c = 8a - 3a^2 = \frac{16}{3}$$
.

Hence [c] = |16/3| = 5.

(6) Domain of

$$y = \frac{1}{\log_{10}(1-x)} + \sqrt{x+2}$$

requires $1-x>0\ (\Rightarrow x<1),\ \log_{10}(1-x)\neq 0\ (\Rightarrow x\neq 0),\ {\rm and}\ x+2\geq 0\ (\Rightarrow x\geq -2).$ Thus the domain is

 $\boxed{[-2,1)\setminus\{0\}}.$

None of the three given printed options matches this exactly, so choose: none of these

(7) Given $f:(0,\infty)\to\mathbb{R}$ and $F(x)=\int_0^x f(t)\,dt$, and $f(x^2)=x^2(1+x)$ for x>0. Put $t=x^2$ so $x=\sqrt{t}$ and

 $f(t) = t(1 + \sqrt{t})$ (for t > 0).

Therefore f(4) = 4(1+2) = 12. (This value is not among the four given choices.)

All steps include necessary reasoning; where an option from the printed list did not match the correct mathematical answer exactly, that discrepancy is noted explicitly.