- 1. If the roots of the equation $a(b-c)x^2+b(c-a)x+c(a-b)=0$ are real and equal and α,β be the roots of equation $ax^2+bx+c=0$ then H.M of α,β is
 - (a) $-1 \alpha \beta$
 - (b) $-2 \alpha \beta$
 - (c) $-3 + \alpha\beta$
 - (d) $-1 + 2\alpha\beta$
- 2. Number of real roots of the equation $\sum_{r=1}^{10} (x-r)^3 = 0$ is
 - (a) 5
 - (b) 4
 - (c) 1
 - (d) 2
- 3. Equation $\frac{a}{x-1} + \frac{b}{x-2} + \frac{c}{x-3} = 0 (a, b, c > 0)$ has
 - (a) one real root in (3,5) and other in (2,3)
 - (b) one real root in (1,2) and other in (2,3)
 - (c) one real root in (-1,0) and other in (1,2)
 - (d) one real root in (-2,-1) and other in (2,3)
- 4. If α is root of equation $4x^2 + 2x 1 = 0$ and $f(x) = 4x^3 3x + 1$ then $2[f(\alpha) + 1] =$
 - (a) 5
 - (b) 4
 - (c) 2
 - (d) 1
- 5. The number of solution of equation $|x-1| = e^x$ is
 - (a) 1
 - (b) 0
 - (c) 4
 - (d) 3
- 6. If $p,q,r,s \in R$ then equation $(x^2+px+3q)(-x^2+rx+q)(-x^2+sx-2q)=0$ has
 - (a) at least one real roots
 - (b) no real root
 - (c) at least two real roots
 - (d) at most one real root

- 7. If α, β are the roots of equation $x^2 + px + q = 0$ and α^4, β^4 be those of equation $x^2 rx + s = 0$ and $f(x) = x^2 4qx + 2q^2 r$ then which one is necessarily true?
 - (a) $f(p^2) = 4$
 - (b) $f(p^2) = 0$
 - (c) $f(2p^2) = 0$
 - (d) $f(4p^2) = 0$
- 8. If $a+b+c>\frac{9c}{4}$ and equation $ax^2+2bx-5c=0$ has non real complex roots, then
 - (a) a > 0, c < 0
 - (b) a < 0, c < 0
 - (c) a > 0, c > 0
 - (d) a > 0, b < 0
- 9. If a,b,c,d are four non zero real numbers such that $(d+a-b)^2+(d+b-c)^2=0$ and roots of the equation $a(b-c)x^2+b(c-a)x+c(a-b)=0$ are real and equal , then
 - (a) $a+b+c \neq 1$
 - (b) a+b+c=0
 - (c) $a+b+c \neq 0$
 - (d) a+b+c=1
- 10. If n is even number and α, β are the roots of equation $x^2 + px + q = 0$ and also of equation $x^{2n} + p^n x^n + q^n = 0$ and $f(x) = \frac{(1+x)^n}{1+x^n}$ then $f(\frac{\alpha}{\beta}) = (\text{ where } \alpha^n + \beta^n \neq 0, p \neq 0)$
 - (a) -1
- 11. If α, β, γ are the roots of the equation $x^3 px + q = 0$ then the cubic equation whose roots are $\frac{\alpha}{1+\alpha}, \frac{\beta}{1+\beta}, \frac{\gamma}{1+\gamma}$ is
 - (a) $(p+q-1)x^3 (2p+3q)x^2 + (p+3q)x q = 0$
- 12. The number of real roots of the equation $x^8 x^5 + x^2 x + 1 = 0$ is
 - (a) 0
- 13. If a,b,c $\in R$ and 1 is a root of the equation $ax^2 + bx + c = 0$ then the equation $4ax^2 + 3bx + 2c = 0$ $c \neq 0$ has
 - (a) imaginary roots
 - (b) real and equal roots
 - (c) real and unequal roots
 - (d) rational roots
- 14. The values of a for which both roots of the equation $(1-a)x^2 + 2ax 1 = 0$ lie between 0 and 1 are given by

- (a) a > 2
- 15. If $sin\theta, cos\theta$ are the roots of the equation $ax^2 + bx + c = 0$ then
 - (a) $a^2 = b^2 2ac$
- 16. If $x^2 + px + q$ is an integer for every integral value of x, then which is necessarily true?
 - (a) $p \in I, q \notin I$
 - (b) $p \notin I, q \in I$
 - (c) $p \in I, q \in I$
 - (d) $p \notin I, q \notin I$