
SOLUTIONS TO COMPLEX NUMBERS (SET 2)

1. Let z and w be two complex numbers such that |z| = |w| and arg z + arg w = π, then z equals :
A. w B. -w C. w D. −w

Solution: Let z = reiθz and w = reiθw , where r = |z| = |w|. The second condition is θz + θw = π.
Thus, θz = π − θw.
Substitute θz into the expression for z:

z = rei(π−θw)

= r(cos(π − θw) + i sin(π − θw))
= r(− cos θw + i sin θw)

Now consider −w:
w = re−iθw = r(cos θw − i sin θw)

−w = −r(cos θw − i sin θw) = r(− cos θw + i sin θw)

Comparing the two results, we find z = −w.
Answer: −w

2. Let z and w be two complex numbers such that |z| ≤ 1, |w| ≤ 1 and |z + iw| = |z − iw| = 2, then z
equals :
A. 1 or i B. i or -i C. 1 or -1 D. i or -1
Solution: We are given |z| ≤ 1 and |w| ≤ 1.
The Triangle Inequality states |z1 + z2| ≤ |z1| + |z2|. Since |z| ≤ 1 and |iw| = |i||w| = |w| ≤ 1, we
have:

|z + iw| ≤ |z| + |iw| ≤ 1 + 1 = 2
For |z + iw| = 2, the equality must hold:

|z + iw| = |z| + |iw|

This implies that z and iw must be collinear with the origin, and z = λ(iw) for some λ > 0. Since
|z| ≤ 1 and |iw| ≤ 1, and |z + iw| = 2, we must have |z| = 1 and |iw| = 1, so |w| = 1.
Also, arg(z) = arg(iw) =⇒ arg(z) = arg(i) + arg(w) = π

2 + arg(w).
From |z − iw| = 2, similarly, we must have |z| = 1 and | − iw| = 1, which means |w| = 1.

|z| + | − iw| = |z − iw|

This implies z = µ(−iw) for some µ > 0. Since |z| = 1 and | − iw| = 1, we must have µ = 1, so
z = −iw.
Let w = cos θ + i sin θ (since |w| = 1). Then w = cos θ − i sin θ.

z = −iw = −i(cos θ − i sin θ) = −i cos θ − i2 sin θ = sin θ − i cos θ

Also, |z| = 1, so z = cos ϕ + i sin ϕ.
Comparing sin θ − i cos θ with cos ϕ + i sin ϕ:

cos ϕ = sin θ and sin ϕ = − cos θ

From cos ϕ = sin θ and sin ϕ = − cos θ, we see ϕ = θ − π
2 .

Now we use the first condition z = iw:

z + iw = 2 =⇒ z = −iw with a correction on the previous step:

The condition for equality in triangle inequality is z
|z| = iw

|iw| . Since |z| = 1 and |iw| = 1, we have
z = iw.



Substitute z = −iw into z = iw:
−iw = iw

w = −w

If w = x + iy, then w = x − iy.

x − iy = −(x + iy) = −x − iy

x = −x =⇒ 2x = 0 =⇒ x = 0

So w must be purely imaginary, w = iy, with |w| = 1 =⇒ |iy| = 1 =⇒ |y| = 1.

w = i or w = −i

Case 1: w = i.
z = iw = i(i) = i2 = −1

Case 2: w = −i.
z = iw = i(−i) = −i2 = 1

Thus, z = 1 or z = −1.
Answer: 1 or -1

3. For positive integers n1, n2 the value of expression (1 + i)n1 + (1 + i3)n1 + (1 + i5)n2 + (1 + i7)n2 ,
here i =

√
−1 is a real number, if and only if :

A. n1 = n2 + 1 B. n1 = n2 − 1 C. n1 = n2 D. n1 > 0, n2 > 0
Solution: First, simplify the terms inside the parentheses using the properties of i: i2 = −1, i3 =
−i, i4 = 1.

• 1 + i3 = 1 − i

• 1 + i5 = 1 + i4 · i = 1 + i

• 1 + i7 = 1 + i4 · i3 = 1 + i3 = 1 − i

Let E be the expression:

E = (1 + i)n1 + (1 − i)n1 + (1 + i)n2 + (1 − i)n2

E is real if and only if Im(E) = 0. Since the sum of a complex number and its conjugate is real, the
sum of conjugates is always real:

• (1 + i)n1 + (1 − i)n1 is real, since (1 − i) = (1 + i) and (1 − i)n1 = (1 + i)n1 .
• Similarly, (1 + i)n2 + (1 − i)n2 is real.

Since both parts are always real for any positive integers n1, n2, the entire expression E is always
real.
Thus, E is a real number for all positive integers n1 and n2.
Answer: n1 > 0, n2 > 0

4. If ω is an imaginary cube root of unity, then (1 + ω − ω2)7 is equal to :
A. 128ω B. −128ω C. 128ω2 D. −128ω2

Solution: Since ω is a cube root of unity and ω ̸= 1, we have the property:

1 + ω + ω2 = 0

From this, we can replace the term 1 + ω:

1 + ω = −ω2

Page 2



Substitute this into the expression:

(1 + ω − ω2)7 = ((−ω2) − ω2)7

= (−2ω2)7

= (−2)7(ω2)7

= −128ω14

Using the property ω3 = 1:

ω14 = ω12 · ω2 = (ω3)4 · ω2 = 14 · ω2 = ω2

So, the expression equals:
−128ω2

Answer: −128ω2

5. The value of sum
∑13

n=1(in + in+1), where i =
√

−1 equals : A. i B. i-1 C. -i D. 0
Solution: The term inside the summation can be factored:

in + in+1 = in(1 + i)

The sum is:

S =
13∑

n=1
in(1 + i) = (1 + i)

13∑
n=1

in

The sum of powers of i over a complete cycle of 4 is zero: i1 + i2 + i3 + i4 = i − 1 − i + 1 = 0.
The sum

∑13
n=1 in has 13 terms. It contains 13/4 = 3 full cycles and 1 remaining term (i13):

13∑
n=1

in = (i1 + i2 + i3 + i4) + (i5 + · · · + i8) + (i9 + · · · + i12) + i13

= 0 + 0 + 0 + i13

= i4·3+1 = (i4)3 · i1 = 13 · i = i

Substitute this back into the expression for S:

S = (1 + i) · i = i + i2 = i − 1

Answer: i-1

6. If

∣∣∣∣∣∣
6i −3i 1
4 3i −1
20 3 i

∣∣∣∣∣∣ = x + iy, then : A. x=3,y=1 B. x=1,y=1 C. x=0,y=3 D. x=0,y=0

Solution: Let D be the determinant. Expand the determinant along the first row:

D = 6i

∣∣∣∣3i −1
3 i

∣∣∣∣ − (−3i)
∣∣∣∣ 4 −1
20 i

∣∣∣∣ + 1
∣∣∣∣ 4 3i
20 3

∣∣∣∣
= 6i((3i)(i) − (−1)(3)) + 3i((4)(i) − (−1)(20)) + 1((4)(3) − (3i)(20))
= 6i(3i2 + 3) + 3i(4i + 20) + (12 − 60i)
= 6i(−3 + 3) + 12i2 + 60i + 12 − 60i

= 6i(0) − 12 + 60i + 12 − 60i

= 0 − 12 + 12 + 60i − 60i

= 0

Thus, x + iy = 0. Since x and y are real, x = 0 and y = 0.
Answer: x=0,y=0
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7. If i =
√

−1, then 4 + 5(− 1
2 + i

√
3

2 )334 + 3(− 1
2 + i

√
3

2 )365 is equal to : A. 1 − i
√

3 B. −1 + i
√

3
C. i

√
3 D. −i

√
3

Solution: Let ω be the imaginary cube root of unity: ω = − 1
2 + i

√
3

2 .
The expression is E = 4 + 5ω334 + 3ω365.
We use the property ω3 = 1.

• ω334 = ω333 · ω1 = (ω3)111 · ω = 1111 · ω = ω

• ω365 = ω363 · ω2 = (ω3)121 · ω2 = 1121 · ω2 = ω2

Substitute these back into E:
E = 4 + 5ω + 3ω2

We use the property 1 + ω + ω2 = 0 =⇒ ω2 = −1 − ω.

E = 4 + 5ω + 3(−1 − ω)
= 4 + 5ω − 3 − 3ω

= (4 − 3) + (5ω − 3ω)
= 1 + 2ω

Substitute ω = − 1
2 + i

√
3

2 :

E = 1 + 2
(

−1
2 + i

√
3

2

)
= 1 − 1 + i

√
3 = i

√
3

Answer: i
√

3

8. If arg(z) < 0, then arg(−z) − arg(z) = A. π B. −π C. − π
2 D. π

2

Solution: We use the property:

arg(z1z2) = arg(z1) + arg(z2) (mod 2π)

Let z1 = −1. Then −z = (−1)z.

arg(−z) = arg(−1) + arg(z) (mod 2π)

Since arg(−1) = π (using the principal argument (−π, π]), we have:

arg(−z) = arg(z) + π (mod 2π)

This means arg(−z) is either arg(z) + π or arg(z) − π.
We are given arg(z) < 0. Let θ = arg(z), so θ ∈ (−π, 0).
Consider the two possibilities for arg(−z):

• θ + π: Since θ ∈ (−π, 0), we have θ + π ∈ (0, π). This is a valid principal argument.
• θ−π: Since θ ∈ (−π, 0), we have θ−π ∈ (−2π, −π). This is outside the principal range (−π, π].

Therefore, the principal argument is arg(−z) = arg(z) + π.

arg(−z) − arg(z) = π

Answer: π
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9. If z1, z2 and z3 are complex numbers such that |z1| = |z2| = |z3| = | 1
z1

+ 1
z2

+ 1
z3

| = 1, then |z1+z2+z3|
is : A. equal to 1 B. less than 1 C. greater than 3 D. equal to 3
Solution: Given |z1| = |z2| = |z3| = 1.
For any complex number z with |z| = 1, we have |z|2 = 1, which means zz = 1, so z = 1

z .
Applying this property to z1, z2, z3:

1
z1

= z1,
1
z2

= z2,
1
z3

= z3

Now consider the given magnitude: ∣∣∣∣ 1
z1

+ 1
z2

+ 1
z3

∣∣∣∣ = 1

Substitute the conjugates:
|z1 + z2 + z3| = 1

We use the property that the magnitude of a sum is equal to the magnitude of its conjugate sum:
|z1 + z2 + z3| = |z1 + z2 + z3|.

|z1 + z2 + z3| = 1

|z1 + z2 + z3| = 1

Answer: equal to 1

10. Let z1 and z2 be the nth roots of unity which subtend a right angle at the origin, then n must be of
the form : A. 4k+1 B. 4k+2 C. 4k+3 D. 4k
Solution: The nth roots of unity are zk = ei 2πk

n , where k = 0, 1, 2, . . . , n − 1.
Let z1 and z2 be two such roots, corresponding to indices k1 and k2.

z1 = ei
2πk1

n , z2 = ei
2πk2

n

The angle subtended by z1 and z2 at the origin is the difference between their arguments:

arg(z2) − arg(z1) = 2πk2

n
− 2πk1

n
= 2π

n
(k2 − k1)

For the angle to be a right angle, the difference in arguments must be ± π
2 .

2π

n
(k2 − k1) = ±π

2

Let k2 − k1 = m, where m is a non-zero integer (1 ≤ |m| ≤ n − 1).

2πm

n
= π

2
2m

n
= 1

2
4m = n

Since m must be an integer, n must be a multiple of 4. If n is of the form 4k for some integer k ≥ 1,
then m = k. For example, if n = 4k, we can choose k1 = 0 and k2 = k. The angle is 2πk

4k = π
2 .

Thus, n must be of the form 4k.
Answer: 4k
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11. The complex numbers z1, z2 and z3 satisfying z1−z3
z2−z3

= 1−i
√

3
2 are the vertices of a triangle which is

: A. of area zero B. right angled isosceles C. equilateral D. obtuse angled isosceles
Solution: Let w = 1−i

√
3

2 .
First, find the modulus and argument of w:

|w| =
∣∣∣∣1
2 − i

√
3

2

∣∣∣∣ =

√(
1
2

)2
+

(
−

√
3

2

)2

=
√

1
4 + 3

4 = 1

arg(w) = arg
(

cos(−π

3 ) + i sin(−π

3 )
)

= −π

3 or 5π

3

The given equation is z1−z3
z2−z3

= w.
1. Modulus: ∣∣∣∣z1 − z3

z2 − z3

∣∣∣∣ = |w| = 1

|z1 − z3| = |z2 − z3|
This means the distance between z1 and z3 is equal to the distance between z2 and z3. The side
lengths z3z1 and z3z2 are equal, so the triangle is **isosceles** with z3 as the vertex angle.
2. Argument:

arg
(

z1 − z3

z2 − z3

)
= arg(w) = −π

3 or 5π

3

arg(z1 − z3) − arg(z2 − z3) = ∠z1z3z2 = ±π

3
The angle at vertex z3 is π

3 or 60◦.
Since the triangle is isosceles and the vertex angle is 60◦, the other two angles must also be 60◦:
180◦−60◦

2 = 60◦.
Therefore, the triangle is **equilateral**.
Answer: equilateral

12. Let ω = − 1
2 + i

√
3

2 , then value of the determinant

∣∣∣∣∣∣
1 1 1
1 −1 − ω2 ω2

1 ω2 ω

∣∣∣∣∣∣ is : A. 3ω B. 3ω(ω − 1)

C. 3ω2 D. 3ω(1 − ω)
Solution: Given ω = − 1

2 + i
√

3
2 , ω is a cube root of unity, so 1 + ω + ω2 = 0 and ω3 = 1.

From 1 + ω + ω2 = 0, we have −1 − ω2 = ω.
Substitute this into the determinant D:

D =

∣∣∣∣∣∣
1 1 1
1 ω ω2

1 ω2 ω

∣∣∣∣∣∣
This is a form of the Vandermonde determinant, but it’s simpler to use row/column operations.
Apply C2 → C2 − C1 and C3 → C3 − C1:

D =

∣∣∣∣∣∣
1 0 0
1 ω − 1 ω2 − 1
1 ω2 − 1 ω − 1

∣∣∣∣∣∣
Expand along the first row:

D = 1 ·
∣∣∣∣ ω − 1 ω2 − 1
ω2 − 1 ω − 1

∣∣∣∣
= (ω − 1)(ω − 1) − (ω2 − 1)(ω2 − 1)
= (ω − 1)2 − (ω2 − 1)2
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Using A2 − B2 = (A − B)(A + B):

D =
(
(ω − 1) − (ω2 − 1)

) (
(ω − 1) + (ω2 − 1)

)
= (ω − ω2)(ω + ω2 − 2)

Now use 1 + ω + ω2 = 0 =⇒ ω + ω2 = −1:

D = (ω − ω2)(−1 − 2)
= (ω − ω2)(−3)
= 3(ω2 − ω) = −3(ω − ω2)

Since 3ω(ω − 1) = 3(ω2 − ω), the determinant is 3ω2 − 3ω.
Answer: 3ω(ω − 1)

13. For all complex numbers z1, z2 satisfying |z1| = 12 and |z2 − 3 − 4i| = 5, the minimum value of
|z1 − z2| is : A. 0 B. 2 C. 7 D. 17
Solution: |z1| = 12 means z1 lies on a circle C1 centered at the origin O(0) with radius R1 = 12.
|z2 − 3 − 4i| = 5 means z2 lies on a circle C2 centered at C(3 + 4i) with radius R2 = 5.
The minimum value of |z1 − z2| is the minimum distance between the two circles.
First, find the distance between the centers O(0) and C(3 + 4i):

d = |0 − (3 + 4i)| = |3 + 4i| =
√

32 + 42 =
√

9 + 16 =
√

25 = 5

Now, compare the distance d with the radii R1 and R2:

R1 = 12, R2 = 5, d = 5

Since d < R1, the smaller circle C2 is inside the larger circle C1. Specifically, R1 − R2 = 12 − 5 = 7.
Since d = 5 < 7, C2 is strictly inside C1.
The minimum distance between two points on the circles (the shortest distance between the circles)
is:

dmin = R1 − (d + R2)

Wait, this formula is only for external distance. The minimum distance is dmin = R1 − (d + R2) if
one circle is completely contained within the other, but the center of C2 is not O.
The minimum distance between two circles is:

dmin = Distance(O, C) − R2 if C2 is outside C1

dmin = R1 − (d + R2) if C2 is strictly inside C1

dmin = 0 if the circles intersect or touch

Since d = 5, R1 = 12, R2 = 5, we have:

d + R2 = 5 + 5 = 10

R1 = 12

Since d + R2 < R1 (10 < 12), circle C2 is entirely contained within C1.
The minimum distance dmin is the distance from the outermost point of C2 (on the line segment
OC) to the circle C1.

dmin = R1 − (d + R2) = 12 − (5 + 5) = 12 − 10 = 2

Answer: 2
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14. If |z| = 1 and w = z−1
z+1 (where z ̸= −1), then Re(w) is : A. 0 B. 1

|z+1|2 C. | 1
z+1 |. 1

|z+1|2

D.
√

2
|z+1|2

Solution: Given |z| = 1, we have zz = 1, so 1
z = z.

To find Re(w), we use Re(w) = w+w
2 .

w =
(

z − 1
z + 1

)
= z − 1

z + 1

Substitute z = 1
z :

w =
1
z − 1
1
z + 1

=
1−z

z
1+z

z

= 1 − z

1 + z
= −z − 1

z + 1 = −w

Since w = −w, we have w + w = 0.

Re(w) = w + w

2 = 0
2 = 0

This means w is purely imaginary. This is a known property: the image of the unit circle |z| = 1
(excluding z = −1) under the Mobius transformation w = z−1

z+1 is the imaginary axis Re(w) = 0.
Answer: 0

15. If ω( ̸= 1) be a cube root of unity and (1 + ω2)n = (1 + ω4)n , then the least positive value of n
is A. 2 B. 3 C. 5 D. 6
Solution: Since ω is a cube root of unity, 1 + ω + ω2 = 0 and ω3 = 1.
Simplify the bases:

• 1 + ω2 = −ω (from 1 + ω + ω2 = 0)
• 1 + ω4 = 1 + ω3 · ω = 1 + ω (from ω3 = 1)
• 1 + ω = −ω2 (from 1 + ω + ω2 = 0)

The equation becomes:
(−ω)n = (−ω2)n

(−1)nωn = (−1)n(ω2)n

If n is even, (−1)n = 1, and the equation is ωn = ω2n.

ω2n − ωn = 0

ωn(ωn − 1) = 0

Since ω ̸= 0, we must have ωn = 1. The smallest positive integer n for which ωn = 1 is n = 3.
If n is odd, (−1)n = −1, and the equation is −ωn = −ω2n, which also leads to ωn = ω2n and thus
ωn = 1.
The least positive value of n for which ωn = 1 is n = 3.
Answer: 3

16. The minimum value of |a + bω + cω2|, where a,b and c are all not equal integers and ω( ̸= 1) is a
cube root of unity, is : A.

√
3 B. 1

2 C. 1 D. 0
Solution: Let z = a + bω + cω2. We want to find |z|2 and then minimize it.
Since 1 + ω + ω2 = 0, we have ω2 = −1 − ω.

z = a + bω + c(−1 − ω) = a − c + (b − c)ω
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Substitute ω = − 1
2 + i

√
3

2 :

z = (a − c) + (b − c)
(

−1
2 + i

√
3

2

)
=

(
a − c − b − c

2

)
+ i

(
(b − c)

√
3

2

)
=

(
2a − 2c − b + c

2

)
+ i

(
(b − c)

√
3

2

)
= 2a − b − c

2 + i

√
3(b − c)

2

Now compute |z|2:

|z|2 =
(

2a − b − c

2

)2
+

(√
3(b − c)

2

)2

= 1
4

(
(2a − b − c)2 + 3(b − c)2)

Since a, b, c are integers that are not all equal, 2a − b − c and b − c must be integers.
For |z|2 to be minimum, the expression (2a − b − c)2 + 3(b − c)2 must be minimum and non-zero
(since a, b, c are not all equal, z cannot be zero).
The minimum value of a sum of squares of integers is achieved when the integers are small. Since
a, b, c are not all equal, b − c ̸= 0 or 2a − b − c ̸= 0.
1. If b − c = 0, then b = c. Since a, b, c are not all equal, a ̸= b.

|z|2 = 1
4(2a − b − b)2 + 0 = 1

4(2a − 2b)2 = 1
4(2(a − b))2 = 1

4 · 4(a − b)2 = (a − b)2

Since a − b is a non-zero integer, the smallest possible value for (a − b)2 is 12 = 1. In this case,
|z|2 = 1, and |z| = 1. (e.g., a = 1, b = 0, c = 0: |1 + 0ω + 0ω2| = 1)
2. If b − c ̸= 0, the smallest possible value for (b − c)2 is 1. Let b − c = ±1.
If we take b − c = 1:

|z|2 = 1
4((2a − b − c)2 + 3(1))

We want to minimize the integer (2a − b − c)2. Since b − c = 1, b = c + 1.

2a − b − c = 2a − (c + 1) − c = 2a − 2c − 1 = 2(a − c) − 1

Since a − c is an integer, 2(a − c) is an even integer, and 2(a − c) − 1 is an odd integer. The smallest
non-zero value for an odd integer squared is (±1)2 = 1. We can achieve 2(a − c) − 1 = 1 by taking
a − c = 1. (e.g., a = 2, c = 1, b = 2).
If a − c = 1, then:

|z|2 = 1
4(12 + 3(1)2) = 1

4(1 + 3) = 1

In both cases, the minimum value of |z|2 is 1.
The minimum value of |a + bω + cω2| is

√
1 = 1.

Answer: 1
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