SOLUTIONS TO COMPLEX NUMBERS (SET 2)

1. Let z and w be two complex numbers such that |z| = |w| and arg z + argw = 7, then z equals :
Aw B.-w C.w D.-w
Solution: Let z = re?= and w = re'» | where r = |z| = |w|. The second condition is 0, + 6, = .

Thus, 0, = 1 — 6.
Substitute 6, into the expression for z:
z = relm0w)
= r(cos(m — 0,) + isin(m — 6,))
=r(—cosfy +isinb,)

Now consider —w

W= re” % = r(cosf, —isinfy,)
—w = —r(cos b, —isinb,) = r(—cosb, + isinb,)
Comparing the two results, we find z = —w.
Answer: —w
2. Let z and w be two complex numbers such that |z| < 1,|w| <1 and |z +iw| = |z — iw| = 2, then 2z

equals :
A lori B.ior-i C.1lor-1 D.ior-1

Solution: We are given |z| <1 and |w| < 1.

The Triangle Inequality states |z1 + 22| < |z1] + |22]. Since |z| < 1 and |iw| = |ilJw| = |w| < 1, we
have:
|z +iw| < |z| 4+ Jiw] <14+1=2

For |z + iw| = 2, the equality must hold:
|z +iw| = || + |iw]

This implies that z and iw must be collinear with the origin, and z = A(iw) for some A > 0. Since
|z| <1 and |iw| <1, and |z + iw| = 2, we must have |z| =1 and |iw| =1, so |w| = 1.
Also, arg(z) = arg(iw) = arg(z) = arg(i) + arg(w) = 5 + arg(w).

From |z — w| = 2, similarly, we must have |z| = 1 and | — iw| = 1, which means |w| = 1.
|z| + | — | = |z — w|

This implies z = pu(—iw) for some p > 0. Since |z| = 1 and | — 7w| = 1, we must have u = 1, so
zZ = —1iW.

Let w = cosf + isin 6 (since |w| = 1). Then @ = cosf — isin 6.

2= —i = —i(cosf —isinf) = —icosf — i*sinf = sinh — i cos f

Also, |z| =1, so z = cos ¢ + isin ¢.

Comparing sin § — i cos 6 with cos ¢ + i sin ¢:

cos¢p =sinf and sin¢g = —cosl
From cos ¢ = sin and sin ¢ = —cos 0, we see ¢ =6 — 7.

Now we use the first condition z = w:
z4+1w =2 = z= —ijw with a correction on the previous step:

The condition for equality in triangle inequality is ‘i

= ‘m,| Since |z| = 1 and |iw| = 1, we have

z — iw.



Substitute z = —iw into z = jw:

If w =z + iy, then w = x — iy.
r—iy=—(r+iy) =—x—1iy

r=—1r — 2r=0 = =0

So w must be purely imaginary, w = iy, with |w| =1 = |iy|=1 = |y| =1

w=1 or w=—1
Case 1: w = 1.
z=iw=i(i) =i = —1
Case 2: w = —1i.
z=iw=i(—i) = —i*=1

Thus, z=1or z = —1.
Answer: 1 or -1
. For positive integers ni,ny the value of expression (1 4+ )™ 4 (1 +43)™ + (1 4+ )72 + (1 4+ 7)"2,

here i = v/—1 is a real number, if and only if :
A ni=ny+1 B.ny=ny—1 C. n1 =ns9 D. ny>0,n>0

Solution: First, simplify the terms inside the parentheses using the properties of i: 2 = —1,i% =
—i,4t = 1.
o 143 =1—1
e 14+ =1+iti=1+i
e 1+i"=1+i"-3=1+3=1—14
Let F be the expression:
E=04+)"+0Q—-)"+Q+9)"+(1—9)"

E is real if and only if Im(E) = 0. Since the sum of a complex number and its conjugate is real, the
sum of conjugates is always real:

o (1+44)™ + (1 —14)" isreal, since (1 —i) = (1+4) and (1 —4)™ = (1 +4)".
o Similarly, (1 +1)™ + (1 —4)"™2 is real.

Since both parts are always real for any positive integers ni,ns, the entire expression E is always
real.

Thus, E is a real number for all positive integers n; and ns.

Answer: ny > 0,ny >0

. If w is an imaginary cube root of unity, then (1 4w — w?)7 is equal to :
A. 128w B. —128w C. 128w? D. —128w?

Solution: Since w is a cube root of unity and w # 1, we have the property:

l4w+w?=0

From this, we can replace the term 1 + w:

1+w=—uw?
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Substitute this into the expression:

14+w-—w?)" =((—w?) — T

= (—2w2)7
= (-2 (@)
= —128w™!
Using the property w?® = 1:
Wt = w12 0% = (W) w? = 14 W2 = WP
So, the expression equals:
—128w

Answer: —128w?

. The value of sum 27113:1(2” +i"*t1), where i = /=T equals: A.i B.i1 C.-i D.0

Solution: The term inside the summation can be factored:

The sum is:
13

13
Z (i) =(1+4)) i

n=1
The sum of powers of i over a complete cycle of 4 is zero: i'! +4? +i3 +i*=i—-1—i+1=0.
The sum 27113:1 i" has 13 terms. It contains 13/4 = 3 full cycles and 1 remaining term (i'3):

13
Dot = (it P i) (i) (i)

=0+04+0+i"
:i4-3+1:(i4)3_i1:13_i:i

Substitute this back into the expression for S:
S=(1+i)-i=i+i?=i—-1

Answer: i-1

6: —3i 1
LIf|4 0 3 —1|=x+14y, then: A.x=3y=1 B.x=1y=1 C. x=0,y=3 D. x=0,y=0
20 3 i

Solution: Let D be the determinant. Expand the determinant along the first row:
3t —1
3 q

6i((31) () — (=1)(3)) + 3i((4)(i) — (=1)(20)) + 1((4)(3) — (31)(20))
6i(3i? + 3) + 3i(4i + 20) + (12 — 604)
6i(—
6

4
20

4 3

b 20 3

67

— (=30)

_.1‘+1‘
VA

3+3) +12i% 4+ 60i + 12 — 60i
i(0) — 12 4+ 60i + 12 — 60¢
=0-12412+60¢ — 607

7

Thus, = + iy = 0. Since = and y are real, x = 0 and y = 0.

Answer: x=0,y=0
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7. 161 =y, then 4+ 5(—1 + 23)334 L 3(—1 1 8)36 jsequal to: A, 1—iv/3 B. —1+iv3
C.iv/3 D. —iV3
Solution: Let w be the imaginary cube root of unity: w = —% +1

The expression is E = 4 + 5w33* 4 3w365.

ol

We use the property w3 = 1.
o W BB = (BT — 1
o W3 — B63 (2 (yB)I21 ()2 (1212 _ 2

Substitute these back into E':
E =4+ 5w+ 3w?

2

We use the property 1 +w+w? =0 = w? = -1 —w.

E=44+5w+3(-1-w)
=4+ 5w —3 — 3w
= (4-3)+ (5w — 3w)
=1+2w

=

Substitute w = f% + 4
1 3
E:1+2<—2+i\2[> =1-1+ivV3=4iV3

Answer: i3

8. If arg(z) < 0, then arg(—z) —arg(z) = A. 7 B. -7 C. — D.

Solution: We use the property:

jus
2

NE

arg(z122) = arg(z1) +arg(z2) (mod 27)
Let 21 = —1. Then —z = (—1)=z.
arg(—2) = arg(—1) +arg(2) (mod 2r)
Since arg(—1) = 7 (using the principal argument (—m,7]), we have:
arg(—z) = arg(z) + © (mod 2m)

This means arg(—z) is either arg(z) + 7 or arg(z) — .
We are given arg(z) < 0. Let 6 = arg(z), so 0 € (—,0).

Consider the two possibilities for arg(—z):

e O+ m: Since 0 € (—7,0), we have 6 + 7 € (0, 7). This is a valid principal argument.

e @—m: Since 0 € (—,0), we have 0 — 7 € (—2m, —). This is outside the principal range (—m, 7).

Therefore, the principal argument is arg(—z) = arg(z) + .

arg(—z) —arg(z) =7

Answer: T
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9. If 21, 23 and z3 are complex numbers such that |z1]| = |22] = |23] = |%+%+i| =1, then |21 + 2o+ 23]
is: A.equaltol B. lessthan1l C. greater than 3 D. equal to 3

Solution: Given |z1| = |22 = |23 = 1.

For any complex number z with |z| = 1, we have |z|?> = 1, which means 2Z = 1,50z = 1

z"

Applying this property to z1, 2o, 23:

1 _ 1 _ 1 _
=R, T TR, T =23
Z1 z9 z3
Now consider the given magnitude:
1 1 1
—+—+—|=1
Z1 zZ9 z3

Substitute the conjugates:
i +Zm 47 =1

We use the property that the magnitude of a sum is equal to the magnitude of its conjugate sum:
|21 + 22 + 23] = |21 + 22 + 23]

|Zl+22+2’3|:1
|21 + 22 + 23] =1

Answer: equal to 1

10. Let z; and 2o be the n** roots of unity which subtend a right angle at the origin, then n must be of
the form : A. 4k+1 B. 4k+2 C. 4k+3 D. 4k

Solution: The nt" roots of unity are z, = ei%, where £k =0,1,2,...,n — 1.
Let z; and z2 be two such roots, corresponding to indices k1 and k.

27k 2k
Z1 =€ n 29 =€ n

The angle subtended by z; and z, at the origin is the difference between their arguments:

27k 2k 21
arg(z) —arg(s) = = = — = = (ks — k)

For the angle to be a right angle, the difference in arguments must be +7.

2T T

n

Let ko — k1 = m, where m is a non-zero integer (1 < |m| <n —1).

27T’ITL_7T
n 2
2m71
n 2
dm =n

Since m must be an integer, n must be a multiple of 4. If n is of the form 4k for some integer k& > 1,

then m = k. For example, if n = 4k, we can choose k; = 0 and ko = k. The angle is 2% = =

ik 2
Thus, n must be of the form 4k.

Answer: 4k

Page 5



Z1—R23 __ 1—i\/§

11. The complex numbers z1, zo and z3 satisfying =22 = are the vertices of a triangle which is

12.

Z2—2Z 2
A. of area zero  B. right angled isosceles e equilateral ~ D. obtuse angled isosceles

Solution: Let w = #

First, find the modulus and argument of w:

=i ) () i

arg(w) = arg (cos(—g) +isin(—g)) = —g or 5%
The given equation is 2:2 =w.
1. Modulus:
21T A3 w| =1
22 — Z3
|21 — 23| = [22 — 23]

This means the distance between z; and z3 is equal to the distance between z, and z3. The side
lengths 2321 and 2329 are equal, so the triangle is **isosceles™ with z3 as the vertex angle.

21 — 23 ™ 5T
arg (| —— | =arg(w) = —= or —
Z9 — 23 3

2. Argument:

arg(z1 — z3) —arg(ze — z3) = Lz12320 = 47

The angle at vertex z3 is § or 60°.

Since the triangle is isosceles and the vertex angle is 60°, the other two angles must also be 60°:
180° —60° o
= 60°.
2

Therefore, the triangle is **equilateral®*.

Answer: equilateral

1 1 1
Let w=—% + i?, then value of the determinant |1 —1—w? w?|lis: A. 3w B. 3w(w—1)
1 w? w
C. 3w? D. 3w(l —w)
Solution: Given w = —% + i@, w is a cube root of unity, so 1 +w + w? = 0 and w? = 1.
From 1+ w + w? =0, we have —1 — w? = w.
Substitute this into the determinant D:
1 1 1
D=1 w w?
1 w? w

This is a form of the Vandermonde determinant, but it’s simpler to use row/column operations.
Apply 02 — 02 — Cl and Cg — Cg — Cli

Expand along the first row:




13.

Using A% — B2 = (A — B)(A + B):
D=(w-1)—(w-1) ((w=1)+ (w®—1))
= (w—w))(w+w?—2)

Nowuse l w4 w?=0 = w+w?=—-1:

Since 3w(w — 1) = 3(w? — w), the determinant is 3w? — 3w.

Answer: 3w(w — 1)

For all complex numbers z1, z2 satisfying |z1| = 12 and |22 — 3 — 44| = 5, the minimum value of
|21 —22]is: A.0 B.2 C.7 D.]17

Solution: |z;| = 12 means z; lies on a circle C; centered at the origin O(0) with radius R; = 12.
|zo — 3 — 4i] = 5 means z, lies on a circle Cy centered at C'(3 + 4i) with radius Ry = 5.
The minimum value of |21 — 29| is the minimum distance between the two circles.

First, find the distance between the centers O(0) and C(3 + 44):
d=10—3+4i)|=13+4i|=v32+42=V9+16=v25=5
Now, compare the distance d with the radii Ry and Ra:

Ri=12, Ry=5, d=5

Since d < Ry, the smaller circle Cs is inside the larger circle C;. Specifically, Ry — R, =12—-5=171.
Since d =5 < 7, Cy is strictly inside C;.

The minimum distance between two points on the circles (the shortest distance between the circles)
is:
dmin = Rl - (d + RZ)

Wait, this formula is only for external distance. The minimum distance is dpin = R1 — (d + Ra) if
one circle is completely contained within the other, but the center of C is not O.

The minimum distance between two circles is:
dmin = Distance(O,C) — Ry if C5 is outside C

dmin = R1 — (d+ R2) if Cy is strictly inside Cy

dmin = 0 if the circles intersect or touch
Since d = 5, Ry = 12, R, = 5, we have:
d+ Ry =5+5=10

Ry =12
Since d + R < Ry (10 < 12), circle Cy is entirely contained within Cf.

The minimum distance dp,i, is the distance from the outermost point of Cy (on the line segment
OC) to the circle Cy.

dmin=R1 — (d+ R2) =12 (5+5)=12-10=2

Answer: 2
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14. If |z| = 1 and w =271 (where z # —1), then Re(w)is: A.0 B

15.

16.

C

z+1 ©o2+1)2 Colz41 10 2412
D, V2 _

[a+1]2
Solution: Given |z| = 1, we have 2Z = 1, so

To find Re(w), we use Re(w) = 2.

Substitute z = L

P

v T11 2 14z 241 -
z z
Since w = —w, we have w+w =0
w+w 0
Re(w) = =-=0

(w) 5 5
This means w is purely imaginary. This is a known property: the image of the unit circle |z| = 1
(excluding z = —1) under the Mobius transformation w = ;_r} is the imaginary axis Re(w) = 0.

Answer: 0

If w(# 1) be a cube root of unity and (1 + w?)® = (1 4+ w*)" , then the least positive value of n
is A.2 B.3 C.5 D.6

Solution: Since w is a cube root of unity, 1 +w + w? = 0 and w? = 1.

Simplify the bases:

e 1+w?=-w (from1+w+w?=0)
e l+uw=1+wd w=1+w (fromwd=1)
e 1+w=-w? (from1+w+w?=0)

The equation becomes:

If n is even, (—1)" = 1, and the equation is w™ = w?".

W —wh =0

WwhHw"—=1)=0
Since w # 0, we must have w™ = 1. The smallest positive integer n for which w™ =1 is n = 3.
If n is odd, (—1)" = —1, and the equation is —w"™ = —w?", which also leads to w™ = w?" and thus
w™ =1.

The least positive value of n for which w™ =1 is n = 3.
Answer: 3

The minimum value of |a + bw + cw?|, where a,b and c are all not equal integers and w(# 1) is a
cube root of unity, is : A. V3 B. % C.1 D.O

Solution: Let z = a + bw + cw?. We want to find |2|? and then minimize it.

2:

Since 1 4+ w + w? = 0, we have w -1 —w.

z=at+bw+tce(-l—-w)=a—c+ (b—cw
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NS

Substitute w = —= + 14

N

z=(a—c)+(b—c) (;ﬂég)

(et ()

_ <2a—202—b—|—c> v ((b—;)ﬁ)

~2a—b—c  V3(b—c)
-T2 T

2 2a—b—c\’ V3(b—c)
- g(z ) (75
4

=—(2a—b—1c)*+3(b—c)?)

Now compute |z|%:

2

Since a, b, ¢ are integers that are not all equal, 2a — b — ¢ and b — ¢ must be integers.

For |z|? to be minimum, the expression (2a — b — ¢)? + 3(b — ¢)? must be minimum and non-zero
(since a, b, ¢ are not all equal, z cannot be zero).

The minimum value of a sum of squares of integers is achieved when the integers are small. Since
a,b,c are not all equal, b —c# 0 or 2a —b—c # 0.

1. If b— ¢ =0, then b = c¢. Since a, b, ¢ are not all equal, a # b.

127 = i(2a bR 40— i(m _op)2 = i(m )=t 4@ =2 = (a—0)

=

Since a — b is a non-zero integer, the smallest possible value for (a — b)? is 12 = 1. In this case,
|22 =1,and |2] = 1. (e.g,a=1,b=0,c=0: |1 + 0w + 0w?| = 1)

2. If b — ¢ # 0, the smallest possible value for (b —c¢)? is 1. Let b — ¢ = +1.
If we take b —c = 1: )
2" = 1((2a—b—c)* +3(1))

We want to minimize the integer (2a — b —c)?. Since b—c=1,b=c+ 1.
2a—b—c=2a—(c+1)—c=2a—2c—1=2(a—c)—1

Since a — ¢ is an integer, 2(a — ¢) is an even integer, and 2(a — ¢) — 1 is an odd integer. The smallest
non-zero value for an odd integer squared is (+1)? = 1. We can achieve 2(a — ¢) — 1 = 1 by taking
a—c=1 (eg,a=2,c=1,b=2).

If a — ¢ =1, then:

o2 = 102 +3(1)) = (1 +3) =1

In both cases, the minimum value of |z|? is 1.
The minimum value of |a + bw + cw?| is V1 = 1.

Answer: 1
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