SOLUTIONS TO COMPLEX NUMBERS (SET 2)

1. Let z and w be two complex numbers such that |z|=|w| and $\arg z+\arg w=\pi$, then z equals : A. w B. -w C. \overline{w} D. $-\overline{w}$

Solution: Let $z = re^{i\theta_z}$ and $w = re^{i\theta_w}$, where r = |z| = |w|. The second condition is $\theta_z + \theta_w = \pi$. Thus, $\theta_z = \pi - \theta_w$.

Substitute θ_z into the expression for z:

$$z = re^{i(\pi - \theta_w)}$$

$$= r(\cos(\pi - \theta_w) + i\sin(\pi - \theta_w))$$

$$= r(-\cos\theta_w + i\sin\theta_w)$$

Now consider $-\overline{w}$:

$$\overline{w} = re^{-i\theta_w} = r(\cos\theta_w - i\sin\theta_w)$$
$$-\overline{w} = -r(\cos\theta_w - i\sin\theta_w) = r(-\cos\theta_w + i\sin\theta_w)$$

Comparing the two results, we find $z = -\overline{w}$.

Answer: $-\overline{w}$

2. Let z and w be two complex numbers such that $|z| \le 1, |w| \le 1$ and $|z+iw| = |z-i\overline{w}| = 2$, then z equals :

A. 1 or i B. i or -i C. 1 or -1 D. i or -1

Solution: We are given $|z| \le 1$ and $|w| \le 1$.

The Triangle Inequality states $|z_1 + z_2| \le |z_1| + |z_2|$. Since $|z| \le 1$ and $|iw| = |i||w| = |w| \le 1$, we have:

$$|z + iw| \le |z| + |iw| \le 1 + 1 = 2$$

For |z + iw| = 2, the equality must hold:

$$|z + iw| = |z| + |iw|$$

This implies that z and iw must be collinear with the origin, and $z = \lambda(iw)$ for some $\lambda > 0$. Since $|z| \le 1$ and $|iw| \le 1$, and |z + iw| = 2, we must have |z| = 1 and |iw| = 1, so |w| = 1.

Also, $\arg(z) = \arg(iw) \implies \arg(z) = \arg(i) + \arg(w) = \frac{\pi}{2} + \arg(w)$.

From $|z - i\overline{w}| = 2$, similarly, we must have |z| = 1 and $|-i\overline{w}| = 1$, which means |w| = 1.

$$|z| + |-i\overline{w}| = |z - i\overline{w}|$$

This implies $z = \mu(-i\overline{w})$ for some $\mu > 0$. Since |z| = 1 and $|-i\overline{w}| = 1$, we must have $\mu = 1$, so $z = -i\overline{w}$.

Let $w = \cos \theta + i \sin \theta$ (since |w| = 1). Then $\overline{w} = \cos \theta - i \sin \theta$.

$$z = -i\overline{w} = -i(\cos\theta - i\sin\theta) = -i\cos\theta - i^2\sin\theta = \sin\theta - i\cos\theta$$

Also, |z| = 1, so $z = \cos \phi + i \sin \phi$.

Comparing $\sin \theta - i \cos \theta$ with $\cos \phi + i \sin \phi$:

$$\cos \phi = \sin \theta$$
 and $\sin \phi = -\cos \theta$

From $\cos \phi = \sin \theta$ and $\sin \phi = -\cos \theta$, we see $\phi = \theta - \frac{\pi}{2}$.

Now we use the first condition z = iw:

$$z + iw = 2 \implies z = -iw$$
 with a correction on the previous step:

The condition for equality in triangle inequality is $\frac{z}{|z|} = \frac{iw}{|iw|}$. Since |z| = 1 and |iw| = 1, we have $\mathbf{z} = \mathbf{iw}$.

Substitute $z = -i\overline{w}$ into z = iw:

$$-i\overline{w} = iw$$

$$\overline{w} = -w$$

If w = x + iy, then $\overline{w} = x - iy$.

$$x - iy = -(x + iy) = -x - iy$$

$$x = -x \implies 2x = 0 \implies x = 0$$

So w must be purely imaginary, w = iy, with $|w| = 1 \implies |iy| = 1 \implies |y| = 1$.

$$w = i$$
 or $w = -i$

Case 1: w = i.

$$z = iw = i(i) = i^2 = -1$$

Case 2: w = -i.

$$z = iw = i(-i) = -i^2 = 1$$

Thus, z = 1 or z = -1.

Answer: 1 or -1

3. For positive integers n_1, n_2 the value of expression $(1+i)^{n_1} + (1+i^3)^{n_1} + (1+i^5)^{n_2} + (1+i^7)^{n_2}$, here $i = \sqrt{-1}$ is a real number, if and only if:

A.
$$n_1 = n_2 + 1$$
 B. $n_1 = n_2 - 1$ C. $n_1 = n_2$ D. $n_1 > 0, n_2 > 0$

Solution: First, simplify the terms inside the parentheses using the properties of i: $i^2 = -1, i^3 = -i, i^4 = 1$.

- $1 + i^3 = 1 i$
- $1 + i^5 = 1 + i^4 \cdot i = 1 + i$
- $1+i^7=1+i^4\cdot i^3=1+i^3=1-i$

Let E be the expression:

$$E = (1+i)^{n_1} + (1-i)^{n_1} + (1+i)^{n_2} + (1-i)^{n_2}$$

E is real if and only if Im(E) = 0. Since the sum of a complex number and its conjugate is real, the sum of conjugates is always real:

- $(1+i)^{n_1} + (1-i)^{n_1}$ is real, since $(1-i) = \overline{(1+i)}$ and $(1-i)^{n_1} = \overline{(1+i)^{n_1}}$.
- Similarly, $(1+i)^{n_2} + (1-i)^{n_2}$ is real.

Since both parts are always real for any positive integers n_1, n_2 , the entire expression E is always real.

Thus, E is a real number for all positive integers n_1 and n_2 .

Answer: $n_1 > 0, n_2 > 0$

4. If ω is an imaginary cube root of unity, then $(1 + \omega - \omega^2)^7$ is equal to :

A. 128ω B. -128ω C. $128\omega^2$ D. $-128\omega^2$

Solution: Since ω is a cube root of unity and $\omega \neq 1$, we have the property:

$$1 + \omega + \omega^2 = 0$$

From this, we can replace the term $1 + \omega$:

$$1 + \omega = -\omega^2$$

Substitute this into the expression:

$$(1 + \omega - \omega^2)^7 = ((-\omega^2) - \omega^2)^7$$
$$= (-2\omega^2)^7$$
$$= (-2)^7 (\omega^2)^7$$
$$= -128\omega^{14}$$

Using the property $\omega^3 = 1$:

$$\omega^{14} = \omega^{12} \cdot \omega^2 = (\omega^3)^4 \cdot \omega^2 = 1^4 \cdot \omega^2 = \omega^2$$

So, the expression equals:

$$-128\omega^2$$

Answer: $-128\omega^2$

5. The value of sum $\sum_{n=1}^{13} (i^n + i^{n+1})$, where $i = \sqrt{-1}$ equals : A. i B. i-1 C. -i D. 0 **Solution:** The term inside the summation can be factored:

$$i^n + i^{n+1} = i^n(1+i)$$

The sum is:

$$S = \sum_{n=1}^{13} i^n (1+i) = (1+i) \sum_{n=1}^{13} i^n$$

The sum of powers of i over a complete cycle of 4 is zero: $i^1 + i^2 + i^3 + i^4 = i - 1 - i + 1 = 0$. The sum $\sum_{n=1}^{13} i^n$ has 13 terms. It contains 13/4 = 3 full cycles and 1 remaining term (i^{13}) :

$$\sum_{n=1}^{13} i^n = (i^1 + i^2 + i^3 + i^4) + (i^5 + \dots + i^8) + (i^9 + \dots + i^{12}) + i^{13}$$

$$= 0 + 0 + 0 + i^{13}$$

$$= i^{4 \cdot 3 + 1} = (i^4)^3 \cdot i^1 = 1^3 \cdot i = i$$

Substitute this back into the expression for S:

$$S = (1+i) \cdot i = i+i^2 = i-1$$

Answer: i-1

6. If
$$\begin{vmatrix} 6i & -3i & 1 \\ 4 & 3i & -1 \\ 20 & 3 & i \end{vmatrix} = x + iy$$
, then : A. $x=3,y=1$ B. $x=1,y=1$ C. $x=0,y=3$ D. $x=0,y=0$

Solution: Let D be the determinant. Expand the determinant along the first row:

$$D = 6i \begin{vmatrix} 3i & -1 \\ 3 & i \end{vmatrix} - (-3i) \begin{vmatrix} 4 & -1 \\ 20 & i \end{vmatrix} + 1 \begin{vmatrix} 4 & 3i \\ 20 & 3 \end{vmatrix}$$

$$= 6i((3i)(i) - (-1)(3)) + 3i((4)(i) - (-1)(20)) + 1((4)(3) - (3i)(20))$$

$$= 6i(3i^2 + 3) + 3i(4i + 20) + (12 - 60i)$$

$$= 6i(-3 + 3) + 12i^2 + 60i + 12 - 60i$$

$$= 6i(0) - 12 + 60i + 12 - 60i$$

$$= 0 - 12 + 12 + 60i - 60i$$

$$= 0$$

Thus, x + iy = 0. Since x and y are real, x = 0 and y = 0.

Answer: x=0,y=0

7. If $i = \sqrt{-1}$, then $4 + 5(-\frac{1}{2} + \frac{i\sqrt{3}}{2})^{334} + 3(-\frac{1}{2} + \frac{i\sqrt{3}}{2})^{365}$ is equal to : A. $1 - i\sqrt{3}$ B. $-1 + i\sqrt{3}$ C. $i\sqrt{3}$ D. $-i\sqrt{3}$

Solution: Let ω be the imaginary cube root of unity: $\omega = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$.

The expression is $E = 4 + 5\omega^{334} + 3\omega^{365}$.

We use the property $\omega^3 = 1$.

•
$$\omega^{334} = \omega^{333} \cdot \omega^1 = (\omega^3)^{111} \cdot \omega = 1^{111} \cdot \omega = \omega$$

•
$$\omega^{365} = \omega^{363} \cdot \omega^2 = (\omega^3)^{121} \cdot \omega^2 = 1^{121} \cdot \omega^2 = \omega^2$$

Substitute these back into E:

$$E = 4 + 5\omega + 3\omega^2$$

We use the property $1 + \omega + \omega^2 = 0 \implies \omega^2 = -1 - \omega$.

$$E = 4 + 5\omega + 3(-1 - \omega)$$
$$= 4 + 5\omega - 3 - 3\omega$$
$$= (4 - 3) + (5\omega - 3\omega)$$
$$= 1 + 2\omega$$

Substitute $\omega = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$:

$$E = 1 + 2\left(-\frac{1}{2} + i\frac{\sqrt{3}}{2}\right) = 1 - 1 + i\sqrt{3} = i\sqrt{3}$$

Answer: $i\sqrt{3}$

8. If $\arg(z) < 0$, then $\arg(-z) - \arg(z) = A$. π B. $-\pi$ C. $-\frac{\pi}{2}$ D. $\frac{\pi}{2}$ Solution: We use the property:

$$\arg(z_1 z_2) = \arg(z_1) + \arg(z_2) \pmod{2\pi}$$

Let $z_1 = -1$. Then -z = (-1)z.

$$\arg(-z) = \arg(-1) + \arg(z) \pmod{2\pi}$$

Since $arg(-1) = \pi$ (using the principal argument $(-\pi, \pi]$), we have:

$$arg(-z) = arg(z) + \pi \pmod{2\pi}$$

This means arg(-z) is either $arg(z) + \pi$ or $arg(z) - \pi$.

We are given arg(z) < 0. Let $\theta = arg(z)$, so $\theta \in (-\pi, 0)$.

Consider the two possibilities for arg(-z):

- $\theta + \pi$: Since $\theta \in (-\pi, 0)$, we have $\theta + \pi \in (0, \pi)$. This is a valid principal argument.
- $\theta \pi$: Since $\theta \in (-\pi, 0)$, we have $\theta \pi \in (-2\pi, -\pi)$. This is outside the principal range $(-\pi, \pi]$.

Therefore, the principal argument is $arg(-z) = arg(z) + \pi$.

$$arg(-z) - arg(z) = \pi$$

Answer: π

9. If z_1, z_2 and z_3 are complex numbers such that $|z_1| = |z_2| = |z_3| = |\frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3}| = 1$, then $|z_1 + z_2 + z_3|$ is: A. equal to 1 B. less than 1 C. greater than 3 D. equal to 3

Solution: Given $|z_1| = |z_2| = |z_3| = 1$.

For any complex number z with |z|=1, we have $|z|^2=1$, which means $z\overline{z}=1$, so $\overline{z}=\frac{1}{z}$.

Applying this property to z_1, z_2, z_3 :

$$\frac{1}{z_1} = \overline{z_1}, \quad \frac{1}{z_2} = \overline{z_2}, \quad \frac{1}{z_3} = \overline{z_3}$$

Now consider the given magnitude:

$$\left| \frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3} \right| = 1$$

Substitute the conjugates:

$$|\overline{z_1} + \overline{z_2} + \overline{z_3}| = 1$$

We use the property that the magnitude of a sum is equal to the magnitude of its conjugate sum: $|\overline{z_1 + z_2 + z_3}| = |z_1 + z_2 + z_3|$.

$$|\overline{z_1 + z_2 + z_3}| = 1$$

$$|z_1 + z_2 + z_3| = 1$$

Answer: equal to 1

10. Let z_1 and z_2 be the n^{th} roots of unity which subtend a right angle at the origin, then n must be of the form: A. 4k+1 B. 4k+2 C. 4k+3 D. 4k

Solution: The n^{th} roots of unity are $z_k = e^{i\frac{2\pi k}{n}}$, where $k = 0, 1, 2, \dots, n-1$.

Let z_1 and z_2 be two such roots, corresponding to indices k_1 and k_2 .

$$z_1 = e^{i\frac{2\pi k_1}{n}}, \quad z_2 = e^{i\frac{2\pi k_2}{n}}$$

The angle subtended by z_1 and z_2 at the origin is the difference between their arguments:

$$\arg(z_2) - \arg(z_1) = \frac{2\pi k_2}{n} - \frac{2\pi k_1}{n} = \frac{2\pi}{n}(k_2 - k_1)$$

For the angle to be a right angle, the difference in arguments must be $\pm \frac{\pi}{2}$.

$$\frac{2\pi}{n}(k_2 - k_1) = \pm \frac{\pi}{2}$$

Let $k_2 - k_1 = m$, where m is a non-zero integer $(1 \le |m| \le n - 1)$.

$$\frac{2\pi m}{n} = \frac{\pi}{2}$$

$$\frac{2m}{n} = \frac{1}{2}$$

$$4m = n$$

Since m must be an integer, n must be a multiple of 4. If n is of the form 4k for some integer $k \ge 1$, then m = k. For example, if n = 4k, we can choose $k_1 = 0$ and $k_2 = k$. The angle is $\frac{2\pi k}{4k} = \frac{\pi}{2}$.

Thus, n must be of the form 4k.

Answer: 4k

11. The complex numbers z_1, z_2 and z_3 satisfying $\frac{z_1-z_3}{z_2-z_3} = \frac{1-i\sqrt{3}}{2}$ are the vertices of a triangle which is : A. of area zero B. right angled isosceles C. equilateral D. obtuse angled isosceles Solution: Let $w = \frac{1-i\sqrt{3}}{2}$.

First, find the modulus and argument of w:

$$|w| = \left| \frac{1}{2} - i \frac{\sqrt{3}}{2} \right| = \sqrt{\left(\frac{1}{2}\right)^2 + \left(-\frac{\sqrt{3}}{2}\right)^2} = \sqrt{\frac{1}{4} + \frac{3}{4}} = 1$$

$$\arg(w) = \arg\left(\cos(-\frac{\pi}{3}) + i\sin(-\frac{\pi}{3})\right) = -\frac{\pi}{3} \quad \text{or } \frac{5\pi}{3}$$

The given equation is $\frac{z_1-z_3}{z_2-z_3}=w$.

1. Modulus:

$$\left| \frac{z_1 - z_3}{z_2 - z_3} \right| = |w| = 1$$
$$|z_1 - z_3| = |z_2 - z_3|$$

This means the distance between z_1 and z_3 is equal to the distance between z_2 and z_3 . The side lengths z_3z_1 and z_3z_2 are equal, so the triangle is **isosceles** with z_3 as the vertex angle.

2. Argument:

$$\arg\left(\frac{z_1 - z_3}{z_2 - z_3}\right) = \arg(w) = -\frac{\pi}{3} \quad \text{or } \frac{5\pi}{3}$$
$$\arg(z_1 - z_3) - \arg(z_2 - z_3) = \angle z_1 z_3 z_2 = \pm \frac{\pi}{3}$$

The angle at vertex z_3 is $\frac{\pi}{3}$ or 60° .

Since the triangle is isosceles and the vertex angle is 60° , the other two angles must also be 60° : $\frac{180^{\circ} - 60^{\circ}}{2} = 60^{\circ}$.

Therefore, the triangle is **equilateral**.

Answer: equilateral

12. Let $\omega = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$, then value of the determinant $\begin{vmatrix} 1 & 1 & 1 \\ 1 & -1 - \omega^2 & \omega^2 \\ 1 & \omega^2 & \omega \end{vmatrix}$ is: A. 3ω B. $3\omega(\omega - 1)$ C. $3\omega^2$ D. $3\omega(1 - \omega)$

Solution: Given $\omega = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$, ω is a cube root of unity, so $1 + \omega + \omega^2 = 0$ and $\omega^3 = 1$. From $1 + \omega + \omega^2 = 0$, we have $-1 - \omega^2 = \omega$.

Substitute this into the determinant D:

$$D = \begin{vmatrix} 1 & 1 & 1 \\ 1 & \omega & \omega^2 \\ 1 & \omega^2 & \omega \end{vmatrix}$$

This is a form of the Vandermonde determinant, but it's simpler to use row/column operations. Apply $C_2 \to C_2 - C_1$ and $C_3 \to C_3 - C_1$:

$$D = \begin{vmatrix} 1 & 0 & 0 \\ 1 & \omega - 1 & \omega^2 - 1 \\ 1 & \omega^2 - 1 & \omega - 1 \end{vmatrix}$$

Expand along the first row:

$$D = 1 \cdot \begin{vmatrix} \omega - 1 & \omega^2 - 1 \\ \omega^2 - 1 & \omega - 1 \end{vmatrix}$$

= $(\omega - 1)(\omega - 1) - (\omega^2 - 1)(\omega^2 - 1)$
= $(\omega - 1)^2 - (\omega^2 - 1)^2$

Using $A^2 - B^2 = (A - B)(A + B)$:

$$D = ((\omega - 1) - (\omega^2 - 1)) ((\omega - 1) + (\omega^2 - 1))$$
$$= (\omega - \omega^2)(\omega + \omega^2 - 2)$$

Now use $1 + \omega + \omega^2 = 0 \implies \omega + \omega^2 = -1$:

$$D = (\omega - \omega^2)(-1 - 2)$$
$$= (\omega - \omega^2)(-3)$$
$$= 3(\omega^2 - \omega) = -3(\omega - \omega^2)$$

Since $3\omega(\omega - 1) = 3(\omega^2 - \omega)$, the determinant is $3\omega^2 - 3\omega$.

Answer: $3\omega(\omega-1)$

13. For all complex numbers z_1, z_2 satisfying $|z_1|=12$ and $|z_2-3-4i|=5$, the minimum value of $|z_1-z_2|$ is : A. 0 B. 2 C. 7 D. 17

Solution: $|z_1| = 12$ means z_1 lies on a circle C_1 centered at the origin O(0) with radius $R_1 = 12$. $|z_2 - 3 - 4i| = 5$ means z_2 lies on a circle C_2 centered at C(3 + 4i) with radius $R_2 = 5$.

The minimum value of $|z_1 - z_2|$ is the minimum distance between the two circles.

First, find the distance between the centers O(0) and C(3+4i):

$$d = |0 - (3+4i)| = |3+4i| = \sqrt{3^2+4^2} = \sqrt{9+16} = \sqrt{25} = 5$$

Now, compare the distance d with the radii R_1 and R_2 :

$$R_1 = 12, \quad R_2 = 5, \quad d = 5$$

Since $d < R_1$, the smaller circle C_2 is inside the larger circle C_1 . Specifically, $R_1 - R_2 = 12 - 5 = 7$. Since d = 5 < 7, C_2 is strictly inside C_1 .

The minimum distance between two points on the circles (the shortest distance between the circles) is:

$$d_{\min} = R_1 - (d + R_2)$$

Wait, this formula is only for external distance. The minimum distance is $d_{\min} = R_1 - (d + R_2)$ if one circle is completely contained within the other, but the center of C_2 is not O.

The minimum distance between two circles is:

$$d_{\min} = \text{Distance}(O, C) - R_2$$
 if C_2 is outside C_1
 $d_{\min} = R_1 - (d + R_2)$ if C_2 is strictly inside C_1

 $d_{\min} = 0$ if the circles intersect or touch

Since $d = 5, R_1 = 12, R_2 = 5$, we have:

$$d + R_2 = 5 + 5 = 10$$

$$R_1 = 12$$

Since $d + R_2 < R_1$ (10 < 12), circle C_2 is entirely contained within C_1 .

The minimum distance d_{\min} is the distance from the outermost point of C_2 (on the line segment OC) to the circle C_1 .

$$d_{\min} = R_1 - (d + R_2) = 12 - (5 + 5) = 12 - 10 = 2$$

Answer: 2

14. If |z| = 1 and $w = \frac{z-1}{z+1}$ (where $z \neq -1$), then Re(w) is : A. 0 B. $\frac{1}{|z+1|^2}$ C. $|\frac{1}{z+1}| \cdot \frac{1}{|z+1|^2}$ D. $\frac{\sqrt{2}}{|z+1|^2}$

Solution: Given |z| = 1, we have $z\overline{z} = 1$, so $\frac{1}{z} = \overline{z}$.

To find Re(w), we use $Re(w) = \frac{w + \overline{w}}{2}$.

$$\overline{w} = \overline{\left(\frac{z-1}{z+1}\right)} = \frac{\overline{z}-1}{\overline{z}+1}$$

Substitute $\overline{z} = \frac{1}{z}$:

$$\overline{w} = \frac{\frac{1}{z} - 1}{\frac{1}{z} + 1} = \frac{\frac{1 - z}{z}}{\frac{1 + z}{z}} = \frac{1 - z}{1 + z} = -\frac{z - 1}{z + 1} = -w$$

Since $\overline{w} = -w$, we have $w + \overline{w} = 0$.

$$Re(w) = \frac{w + \overline{w}}{2} = \frac{0}{2} = 0$$

This means w is purely imaginary. This is a known property: the image of the unit circle |z|=1 (excluding z=-1) under the Mobius transformation $w=\frac{z-1}{z+1}$ is the imaginary axis $\mathrm{Re}(w)=0$.

Answer: (

15. If $\omega(\neq 1)$ be a cube root of unity and $(1+\omega^2)^n=(1+\omega^4)^n$, then the least positive value of n is A. 2 B. 3 C. 5 D. 6

Solution: Since ω is a cube root of unity, $1 + \omega + \omega^2 = 0$ and $\omega^3 = 1$.

Simplify the bases:

- $1 + \omega^2 = -\omega$ (from $1 + \omega + \omega^2 = 0$)
- $1 + \omega^4 = 1 + \omega^3 \cdot \omega = 1 + \omega$ (from $\omega^3 = 1$)
- $1 + \omega = -\omega^2$ (from $1 + \omega + \omega^2 = 0$)

The equation becomes:

$$(-\omega)^n = (-\omega^2)^n$$
$$(-1)^n \omega^n = (-1)^n (\omega^2)^n$$

If n is even, $(-1)^n = 1$, and the equation is $\omega^n = \omega^{2n}$.

$$\omega^{2n} - \omega^n = 0$$

$$\omega^n(\omega^n - 1) = 0$$

Since $\omega \neq 0$, we must have $\omega^n = 1$. The smallest positive integer n for which $\omega^n = 1$ is n = 3.

If n is odd, $(-1)^n = -1$, and the equation is $-\omega^n = -\omega^{2n}$, which also leads to $\omega^n = \omega^{2n}$ and thus $\omega^n = 1$.

The least positive value of n for which $\omega^n = 1$ is n = 3.

Answer: 3

16. The minimum value of $|a+b\omega+c\omega^2|$, where a,b and c are all not equal integers and $\omega(\neq 1)$ is a cube root of unity, is : A. $\sqrt{3}$ B. $\frac{1}{2}$ C. 1 D. 0

Solution: Let $z = a + b\omega + c\omega^2$. We want to find $|z|^2$ and then minimize it.

Since $1 + \omega + \omega^2 = 0$, we have $\omega^2 = -1 - \omega$.

$$z = a + b\omega + c(-1 - \omega) = a - c + (b - c)\omega$$

Substitute $\omega = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$:

$$\begin{split} z &= (a-c) + (b-c) \left(-\frac{1}{2} + i \frac{\sqrt{3}}{2} \right) \\ &= \left(a - c - \frac{b-c}{2} \right) + i \left(\frac{(b-c)\sqrt{3}}{2} \right) \\ &= \left(\frac{2a - 2c - b + c}{2} \right) + i \left(\frac{(b-c)\sqrt{3}}{2} \right) \\ &= \frac{2a - b - c}{2} + i \frac{\sqrt{3}(b-c)}{2} \end{split}$$

Now compute $|z|^2$:

$$|z|^2 = \left(\frac{2a - b - c}{2}\right)^2 + \left(\frac{\sqrt{3}(b - c)}{2}\right)^2$$
$$= \frac{1}{4}\left((2a - b - c)^2 + 3(b - c)^2\right)$$

Since a, b, c are integers that are not all equal, 2a - b - c and b - c must be integers.

For $|z|^2$ to be minimum, the expression $(2a - b - c)^2 + 3(b - c)^2$ must be minimum and non-zero (since a, b, c are not all equal, z cannot be zero).

The minimum value of a sum of squares of integers is achieved when the integers are small. Since a, b, c are not all equal, $b - c \neq 0$ or $2a - b - c \neq 0$.

1. If b-c=0, then b=c. Since a,b,c are not all equal, $a\neq b$.

$$|z|^2 = \frac{1}{4}(2a - b - b)^2 + 0 = \frac{1}{4}(2a - 2b)^2 = \frac{1}{4}(2(a - b))^2 = \frac{1}{4} \cdot 4(a - b)^2 = (a - b)^2$$

Since a-b is a non-zero integer, the smallest possible value for $(a-b)^2$ is $1^2=1$. In this case, $|z|^2=1$, and |z|=1. (e.g., a=1,b=0,c=0: $|1+0\omega+0\omega^2|=1$)

2. If $b-c\neq 0$, the smallest possible value for $(b-c)^2$ is 1. Let $b-c=\pm 1$.

If we take b - c = 1:

$$|z|^2 = \frac{1}{4}((2a - b - c)^2 + 3(1))$$

We want to minimize the integer $(2a - b - c)^2$. Since b - c = 1, b = c + 1.

$$2a - b - c = 2a - (c + 1) - c = 2a - 2c - 1 = 2(a - c) - 1$$

Since a-c is an integer, 2(a-c) is an even integer, and 2(a-c)-1 is an odd integer. The smallest non-zero value for an odd integer squared is $(\pm 1)^2 = 1$. We can achieve 2(a-c)-1 = 1 by taking a-c=1. (e.g., a=2, c=1, b=2).

If a - c = 1, then:

$$|z|^2 = \frac{1}{4}(1^2 + 3(1)^2) = \frac{1}{4}(1+3) = 1$$

In both cases, the minimum value of $|z|^2$ is 1.

The minimum value of $|a + b\omega + c\omega^2|$ is $\sqrt{1} = 1$.

Answer: 1