Answers and Detailed Solutions

Section A - Multiple Choice Questions

- 1. **Answer:** (b) 250 **Solution:** Let R be the radius of the sphere and r and h be the radius and height of the cone. R=10 cm, r=2 cm, h=4 cm. Volume of sphere $V_{\rm sphere}=\frac{4}{3}\pi R^3=\frac{4}{3}\pi(10)^3=\frac{4000}{3}\pi$ cm³. Volume of one cone $V_{\rm cone}=\frac{1}{3}\pi r^2h=\frac{1}{3}\pi(2)^2(4)=\frac{16}{3}\pi$ cm³. Number of cones $n=\frac{V_{\rm sphere}}{V_{\rm cone}}=\frac{\frac{4000}{3}\pi}{\frac{16}{3}\pi}=\frac{4000}{16}=250$.
- 2. **Answer:** (b) 14 cm **Solution:** Total Surface Area (TSA) of a solid hemisphere $= 3\pi r^2$. Given $3\pi r^2 = 462$ cm². $3 \times \frac{22}{7} \times r^2 = 462$. $r^2 = \frac{462 \times 7}{3 \times 22} = \frac{462 \times 7}{66}$. $r^2 = 7 \times 7 = 49$. r = 7 cm. Diameter $d = 2r = 2 \times 7 = 14$ cm.
- 3. **Answer:** (b) 4:9 **Solution:** Let a_1 and a_2 be the edges of the two cubes. Ratio of volumes $\frac{V_1}{V_2} = \frac{a_1^3}{a_2^3} = \frac{8}{27} = \left(\frac{2}{3}\right)^3$. Ratio of edges $\frac{a_1}{a_2} = \frac{2}{3}$. Total Surface Area (TSA) of a cube = $6a^2$. Ratio of TSAs $\frac{\text{TSA}_1}{\text{TSA}_2} = \frac{6a_1^2}{6a_2^2} = \left(\frac{a_1}{a_2}\right)^2 = \left(\frac{2}{3}\right)^2 = \frac{4}{9}$.
- 4. **Answer:** (b) 2/3 **Solution:** Let r be the radius of the cylinder/cone and h be the height of the removed part (cone). Volume of the cylindrical part removed (if it were not sharpened) $V_{\rm cyl} = \pi r^2 h$. Volume of the conical part (pencil tip) $V_{\rm cone} = \frac{1}{3}\pi r^2 h$. Volume of material removed $V_{\rm removed} = V_{\rm cyl} V_{\rm cone} = \pi r^2 h \frac{1}{3}\pi r^2 h = \frac{2}{3}\pi r^2 h$. The volume removed is $\frac{2}{3}$ of the volume of the cylindrical part corresponding to the removed section, $V_{\rm cyl}$. The question asks for the fraction of the *whole pencil's volume*. Assuming the *whole pencil's volume* refers to the *volume of the cylindrical part that was sharpened* (as the volume of the whole pencil is unknown), the fraction is: Fraction = $\frac{V_{\rm removed}}{V_{\rm cyl}} = \frac{2}{3}\pi r^2 h = \frac{2}{3}$.
- 5. **Answer:** (a) 48 cm^3 **Solution:** Let the edges be l = x, b = 2x, h = 3x. TSA of cuboid $= 2(lb + bh + hl) = 88 \text{ cm}^2$. 2(x(2x) + 2x(3x) + 3x(x)) = 88. $2(2x^2 + 6x^2 + 3x^2) = 88$. $2(11x^2) = 88 \implies 22x^2 = 88$. $x^2 = 4 \implies x = 2$ (since length must be positive). The edges are l = 2 cm, b = 4 cm, h = 6 cm. Volume $V = lbh = 2 \times 4 \times 6 = 48 \text{ cm}^3$.
- 6. **Answer:** (d) 898333.33 litres **Solution:** Inner radius r=3.5 m. Volume of hemispherical tank $V=\frac{2}{3}\pi r^3=\frac{2}{3}\times\frac{22}{7}\times(3.5)^3$. $V=\frac{2}{3}\times\frac{22}{7}\times42.875=\frac{44}{21}\times42.875\approx89.8333$ m³. Since 1 m³ = 1000 litres, Capacity in litres = 89.8333 × 1000 \approx 898333.33 litres.
- 7. **Answer:** (a) 17 m **Solution:** Length of the longest rod (diagonal of the cuboid) $D = \sqrt{l^2 + b^2 + h^2}$. $D = \sqrt{12^2 + 9^2 + 8^2} = \sqrt{144 + 81 + 64} = \sqrt{289} = 17$ m.

Section B - Short Answer Questions

8. **Solution:** A cube of side 4 cm is cut into $(4/1)^3 = 64$ smaller cubes. Cubes with exactly two painted faces are located on the edges, excluding the corners. Number of small cubes on each edge = 4/1 = 4. Number of small cubes with two painted faces on one edge = 4 - 2 = 2 (excluding the two corner cubes). Total number of edges in a cube = 12. Total number of smaller cubes with exactly two painted faces = $12 \times 2 = 24$.

- 9. **Solution:** Diameter of roller d=84 cm $\implies r=42$ cm =0.42 m. Length of roller h=120 cm =1.2 m. Area covered in one revolution = Curved Surface Area (CSA) of the cylinder $=2\pi rh$. CSA $=2\times\frac{22}{7}\times0.42\times1.2=2\times22\times0.06\times1.2=3.168$ m². Area of the playground = Area covered in 500 revolutions. Area $=500\times3.168=1584$ m².
- 10. **Solution:** Let V_1 and V_2 be the volumes of the two cones. Let V' be the volume of the single cone. $V_1 = \frac{1}{3}\pi r_1^2 h$, $V_2 = \frac{1}{3}\pi r_2^2 h$. $V' = \frac{1}{3}\pi r'^2 h'$. By conservation of volume: $V' = V_1 + V_2$. $\frac{1}{3}\pi r'^2 h' = \frac{1}{3}\pi r_1^2 h + \frac{1}{3}\pi r_2^2 h$. $\frac{1}{3}\pi r'^2 h' = \frac{1}{3}\pi h(r_1^2 + r_2^2)$. Given h = h', we can cancel $\frac{1}{3}\pi h$ from both sides. $r'^2 = r_1^2 + r_2^2$. The statement $r'^3 = r_1^3 + r_2^3$ is **false**. The correct relation is $r'^2 = r_1^2 + r_2^2$.
- 11. **Solution:** Curved Surface Area (CSA) of cylinder = $2\pi rh$ = 1320 cm². Base radius r = 10.5 cm. $2 \times \frac{22}{7} \times 10.5 \times h = 1320$. $44 \times 1.5 \times h = 1320$. $66h = 1320 \implies h = \frac{1320}{66} = 20$ cm. Volume of the cylinder $V = \pi r^2 h = \frac{22}{7} \times (10.5)^2 \times 20$. $V = \frac{22}{7} \times 110.25 \times 20 = 22 \times 15.75 \times 20 = 6930$ cm³.
- 12. **Solution:** Inner radius $r_1 = 5$ cm. Thickness t = 0.25 cm. Outer radius $r_2 = r_1 + t = 5 + 0.25 = 5.25$ cm. Volume of steel used $V_{\text{steel}} = \text{Volume}$ of outer hemisphere Volume of inner hemisphere. $V_{\text{steel}} = \frac{2}{3}\pi r_2^3 \frac{2}{3}\pi r_1^3 = \frac{2}{3}\pi (r_2^3 r_1^3)$. $V_{\text{steel}} = \frac{2}{3} \times 3.14 \times ((5.25)^3 (5)^3)$. $V_{\text{steel}} = \frac{2}{3} \times 3.14 \times (144.703125 125)$. $V_{\text{steel}} = \frac{2}{3} \times 3.14 \times 19.703125 \approx 41.28 \text{ cm}^3$.
- 13. **Solution:** When the rectangular sheet 44 cm × 18 cm is rolled along its length (44 cm), the length becomes the circumference of the cylinder's base, and the width becomes its height. Circumference $C=2\pi r=44$ cm. $2\times\frac{22}{7}\times r=44\implies r=7$ cm. Height of the cylinder h=18 cm. Volume of the cylinder $V=\pi r^2h=\frac{22}{7}\times(7)^2\times18$. $V=22\times7\times18=154\times18=2772$ cm³.

Section C - Long Answer Questions

- 14. **Solution:** The tent consists of a cylinder and a cone. Canvas is required for the CSA of both. **Cylindrical part:** Height $h_{\rm cyl}=3$ m. Diameter D=105 m \Longrightarrow radius r=52.5 m. ${\rm CSA_{\rm cyl}}=2\pi r h_{\rm cyl}=2\times\frac{22}{7}\times52.5\times3$. ${\rm CSA_{\rm cyl}}=2\times22\times7.5\times3=990$ m². **Conical part:** Radius r=52.5 m. Slant height l=50 m. ${\rm CSA_{\rm cone}}=\pi r l=\frac{22}{7}\times52.5\times50$. ${\rm CSA_{\rm cone}}=22\times7.5\times50=8250$ m². **Total Area and Cost:** Total area of canvas = ${\rm CSA_{\rm cyl}}+{\rm CSA_{\rm cone}}=990+8250=9240$ m². Total cost = Total Area × Cost per m² = $9240\times10={\rm Rs}$. 92400.
- 15. **Solution:** The water flowing in a minute forms a cuboid. Depth h=3 m, Width b=40 m. Rate of flow (length of the cuboid formed per hour) L=2 km/hr = 2000 m/hr. Length of water falling into the sea in 1 minute $l=L\times\frac{1}{60}$ hour/min. $l=2000\times\frac{1}{60}=\frac{200}{6}=\frac{100}{3}$ m. Volume of water falling into the sea per minute $V=l\times b\times h$. $V=\frac{100}{3}\times 40\times 3=100\times 40=4000$ m³.
- 16. **Solution:** The tank consists of a cylinder with radius r and height h and a hemisphere with radius r. Total height of the tank H = r + h. Therefore, h = H r. Total Surface Area (TSA) of the tank: TSA = Base Area (circular) + CSA of cylinder + CSA of hemisphere. Since the base is the ground, and the cylinder is joined to the hemisphere (internal joint area is not counted), the TSA is: TSA = Area of the circular base + CSA of cylinder + CSA of hemisphere. TSA =

 $\pi r^2 + 2\pi r h + 2\pi r^2$. TSA = $3\pi r^2 + 2\pi r h$. Substitute h = H - r into the equation: TSA = $3\pi r^2 + 2\pi r (H - r)$. TSA = $3\pi r^2 + 2\pi r H - 2\pi r^2$. TSA = $\pi r^2 + 2\pi r H = \pi r (r + 2H)$.

17. **Solution:** The actual capacity of the glass is the volume of the cylindrical glass minus the volume of the hemispherical raised portion. **Cylindrical part:** Inner diameter D=7 cm \Longrightarrow radius R=3.5 cm. Height H=16 cm. Volume of the cylinder $V_{\rm cyl}=\pi R^2H=\frac{22}{7}\times(3.5)^2\times16$. $V_{\rm cyl}=\frac{22}{7}\times12.25\times16=22\times1.75\times16=616$ cm³. **Hemispherical part:** Radius of the hemisphere r=3.5 cm (same as the cylinder's base radius). Volume of the hemisphere $V_{\rm hemi}=\frac{2}{3}\pi r^3=\frac{2}{3}\times\frac{22}{7}\times(3.5)^3$. $V_{\rm hemi}=\frac{2}{3}\times\frac{22}{7}\times42.875\approx89.83$ cm³. $V_{\rm hemi}=\frac{1}{3}\times(\pi r^2)\times(2r)=\frac{1}{3}\times\left(\frac{22}{7}\times(3.5)^2\right)\times7=\frac{1}{3}\times38.5\times7=\frac{269.5}{3}\approx89.833$ cm³. **Actual Capacity:** Actual Capacity $V_{\rm act}=V_{\rm cyl}-V_{\rm hemi}=616-89.833=526.167$ cm³.

Section D — Case Study Solutions

Given: Volume of the hemispherical dome, $V=179.67~\mathrm{m^3}$ Cost of insulation for inner surface = Rs. 50 per m² Cost of reflective paint for outer surface = Rs. 20 per m² $\pi=\frac{22}{7}$

Formulae Used:

- Volume of a hemisphere: $V = \frac{2}{3}\pi r^3$
- Curved surface area (C.S.A.) of a hemisphere: $A=2\pi r^2$
- Area of circular base: $A_{\text{base}} = \pi r^2$

Q1. Finding the radius of the dome

$$V = \frac{2}{3}\pi r^3 = 179.67$$

Substitute $\pi = \frac{22}{7}$:

$$\frac{2}{3} \times \frac{22}{7} \times r^3 = 179.67$$

$$r^3 = \frac{179.67 \times 3 \times 7}{2 \times 22} = \frac{3773.07}{44} \approx 85.75$$

$$r = \sqrt[3]{85.75} \approx 4.4 \text{ m}$$

Answer: The radius of the dome is approximately 4.4 m

Q2. Finding the inner surface area (to be insulated)

$$A = 2\pi r^2$$

$$A = 2 \times \frac{22}{7} \times (4.4)^2 = \frac{44}{7} \times 19.36 = 121.7 \text{ m}^2$$

Answer: The inner surface area is approximately 122 m²

Q3. Cost of reflective paint on the outer surface

$$Cost = Area \times Rate$$

$$Cost = 122 \times 20 = 2440$$

Answer: The cost of reflective paint is Rs. 2440.

Q4. Cost of insulation on the inner surface

$$Cost = 122 \times 50 = 6100$$

Answer: The cost of insulation is Rs. 6100

Q5. Cost of mat for the circular floor

Area of the floor:

$$A_{\text{base}} = \pi r^2 = \frac{22}{7} \times (4.4)^2 = 60.8 \text{ m}^2$$

Cost of mat:

$$Cost = 60.8 \times 100 = 6080$$

Answer: The cost of mat to cover the floor is Rs. 6080

Final Summary:

Q.No.	Description	Answer
1	Radius of dome	4.4 m
2	Inner surface area	122 m^2
3	Cost of reflective paint	Rs. 2440
4	Cost of insulation	Rs. 6100
5	Cost of mat for floor	Rs. 6080