ISC CLASS XII MATHEMATICS (TEST PAPER 2)

Time Allowed: 3 hours Maximum Marks: 80

Solutions to Question 1

1. **Answer:** 3

Solution: The relation R on \mathbb{Z} is defined by $(a,b) \in R$ if and only if a-b is divisible by 3.

This is an equivalence relation (reflexive, symmetric, and transitive). The equivalence classes are determined by remainders modulo 3:

$$[0] = \{\ldots, -6, -3, 0, 3, 6, \ldots\}$$
 (numbers divisible by 3)

$$[1] = \{\ldots, -5, -2, 1, 4, 7, \ldots\}$$
 (numbers leaving remainder 1)

$$[2] = \{\ldots, -4, -1, 2, 5, 8, \ldots\}$$
 (numbers leaving remainder 2)

Thus, there are exactly 3 distinct equivalence classes.

2. **Answer:** 625

Solution: Given: |A| = -5 and order of A is 3.

We know that $|\operatorname{adj}(A)| = |A|^{n-1}$ for an $n \times n$ matrix.

$$|A^2| = |A|^2 = (-5)^2 = 25$$

 $|\operatorname{adj}(A^2)| = |A^2|^{n-1} = |A^2|^{3-1} = (25)^2 = 625$

1

3. Answer: $\frac{3}{4}$

Solution: Let
$$\theta = \tan^{-1}\left(\frac{1}{3}\right)$$
, so $\tan \theta = \frac{1}{3}$.

Using the double angle formula for tangent:

$$\tan(2\theta) = \frac{2 \tan \theta}{1 - \tan^2 \theta}$$

$$= \frac{2 \cdot \frac{1}{3}}{1 - (\frac{1}{3})^2}$$

$$= \frac{\frac{2}{3}}{1 - \frac{1}{9}}$$

$$= \frac{\frac{2}{3}}{\frac{8}{9}}$$

$$= \frac{2}{3} \cdot \frac{9}{8} = \frac{3}{4}$$

4. **Answer:** $k = \pm 1$

Solution: For continuity at x = 0, we require:

$$\lim_{x \to 0} f(x) = f(0) = \frac{1}{2}$$

Using the limit:

$$\lim_{x \to 0} \frac{1 - \cos(kx)}{x^2} = \lim_{x \to 0} \frac{2\sin^2\left(\frac{kx}{2}\right)}{x^2}$$

$$= 2\lim_{x \to 0} \frac{\sin^2\left(\frac{kx}{2}\right)}{x^2}$$

$$= 2\lim_{x \to 0} \left(\frac{\sin\left(\frac{kx}{2}\right)}{x}\right)^2$$

$$= 2\left(\frac{k}{2}\right)^2 \lim_{x \to 0} \left(\frac{\sin\left(\frac{kx}{2}\right)}{\frac{kx}{2}}\right)^2$$

$$= 2 \cdot \frac{k^2}{4} \cdot 1 = \frac{k^2}{2}$$

For continuity: $\frac{k^2}{2} = \frac{1}{2} \Rightarrow k^2 = 1 \Rightarrow k = \pm 1$

5. Answer: Order = 3, Degree = 2

Solution: The given differential equation is:

$$\left(\frac{d^3y}{dx^3}\right)^2 - 5\frac{d^2y}{dx^2} + \sqrt{\frac{dy}{dx} + 1} = 0$$

- Order: The highest order derivative is $\frac{d^3y}{dx^3}$, so order = 3.
- **Degree:** The highest power of the highest order derivative is 2 $(\text{from } \left(\frac{d^3y}{dx^3}\right)^2)$, so degree = 2.
- 6. Answer: $\frac{\pi}{4}$

Solution:

$$\int_0^1 \frac{dx}{1+x^2} = \left[\tan^{-1} x\right]_0^1$$
$$= \tan^{-1}(1) - \tan^{-1}(0)$$
$$= \frac{\pi}{4} - 0 = \frac{\pi}{4}$$

7. **Answer:** The function is neither one-one nor onto.

Solution: Not one-one: Consider f(0) = |0 - 1| = 1 and f(2) = |2 - 1| = 1. So f(0) = f(2) but $0 \neq 2$. Therefore, f is not one-one.

Not onto: The range of f(x) = |x - 1| is $[0, \infty)$, but the codomain is \mathbb{R} . Negative numbers are not in the range. For example, there is no $x \in \mathbb{R}$ such that f(x) = -1. Therefore, f is not onto.

8. **Answer:** Local maximum at $x = \frac{1}{3}$, Local minimum at x = 1

Solution: Given $f(x) = x(x-1)^2 = x(x^2 - 2x + 1) = x^3 - 2x^2 + x$

$$f'(x) = 3x^2 - 4x + 1$$

$$f'(x) = 0 \Rightarrow 3x^2 - 4x + 1 = 0$$

$$\Rightarrow (3x - 1)(x - 1) = 0$$

$$\Rightarrow x = \frac{1}{3}, 1$$

Using first derivative test:

• For $x < \frac{1}{3}$: f'(x) > 0 (increasing)

• For $\frac{1}{3} < x < 1$: f'(x) < 0 (decreasing)

• For x > 1: f'(x) > 0 (increasing)

Thus:

• Local maximum at $x = \frac{1}{3}$

• Local minimum at x = 1

9. **Answer:** Yes, A and B are independent.

Solution: For independent events, $P(A \cap B) = P(A) \cdot P(B)$

Given:

$$P(A) = 0.6$$

 $P(B) = 0.4$
 $P(A \cap B) = 0.24$
 $P(A) \cdot P(B) = 0.6 \times 0.4 = 0.24$

Since $P(A \cap B) = P(A) \cdot P(B) = 0.24$, events A and B are independent.

10. **Answer:** $p = \frac{1}{3}$

Solution: Given $X \sim B(4, p)$ and $P(X = 0) = \frac{16}{81}$

For binomial distribution:

$$P(X = 0) = {4 \choose 0} p^0 (1 - p)^4 = (1 - p)^4$$
$$(1 - p)^4 = \frac{16}{81}$$
$$1 - p = \left(\frac{16}{81}\right)^{1/4} = \left(\frac{2^4}{3^4}\right)^{1/4} = \frac{2}{3}$$
$$p = 1 - \frac{2}{3} = \frac{1}{3}$$

Solutions to Question 2

1. **Answer:**
$$\frac{dy}{dx} = \frac{(\cos x)^x [\ln(\cos x) - x \tan x] - yx^{y-1}}{1 - x^y \ln x}$$

Solution: Given: $y = (\cos x)^x + x^y$

Let $u = (\cos x)^x$ and $v = x^y$, so y = u + v

For $u = (\cos x)^x$:

$$\ln u = x \ln(\cos x)$$

$$\frac{1}{u} \frac{du}{dx} = \ln(\cos x) + x \cdot \frac{-\sin x}{\cos x}$$

$$\frac{du}{dx} = (\cos x)^x [\ln(\cos x) - x \tan x]$$

For $v = x^y$:

$$\ln v = y \ln x$$

$$\frac{1}{v} \frac{dv}{dx} = \frac{dy}{dx} \ln x + \frac{y}{x}$$

$$\frac{dv}{dx} = x^y \left(\frac{dy}{dx} \ln x + \frac{y}{x}\right)$$

Now differentiating y = u + v:

$$\frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx}$$

$$\frac{dy}{dx} = (\cos x)^x [\ln(\cos x) - x \tan x] + x^y \left(\frac{dy}{dx} \ln x + \frac{y}{x}\right)$$

$$\frac{dy}{dx} - x^y \ln x \cdot \frac{dy}{dx} = (\cos x)^x [\ln(\cos x) - x \tan x] + \frac{yx^y}{x}$$

$$\frac{dy}{dx} (1 - x^y \ln x) = (\cos x)^x [\ln(\cos x) - x \tan x] + yx^{y-1}$$

$$\frac{dy}{dx} = \frac{(\cos x)^x [\ln(\cos x) - x \tan x] + yx^{y-1}}{1 - x^y \ln x}$$

2. **Answer:** LMVT is verified with c = 2.5

Solution: Given: $f(x) = x^2 - 4x - 3$ on [1, 4]

Conditions for LMVT:

- (a) f(x) is continuous on [1, 4] (polynomial function)
- (b) f(x) is differentiable on (1,4) (polynomial function)

Both conditions are satisfied.

$$f(1) = 1^{2} - 4(1) - 3 = 1 - 4 - 3 = -6$$

$$f(4) = 16 - 16 - 3 = -3$$

$$f'(x) = 2x - 4$$

By LMVT, there exists $c \in (1,4)$ such that:

$$f'(c) = \frac{f(4) - f(1)}{4 - 1}$$
$$2c - 4 = \frac{-3 - (-6)}{3} = \frac{3}{3} = 1$$
$$2c = 5$$
$$c = 2.5 \in (1, 4)$$

Hence, Lagrange's Mean Value Theorem is verified.

3. **Answer:** $\frac{1}{221}$

Solution: Total number of kings in a deck = 4

Number of ways to draw 2 cards from 52:

Total outcomes =
$$\binom{52}{2}$$
 = $\frac{52 \times 51}{2}$ = 1326

Number of ways to draw 2 kings from 4:

Favorable outcomes
$$= \binom{4}{2} = \frac{4 \times 3}{2} = 6$$

Required probability:

$$P(\text{both kings}) = \frac{6}{1326} = \frac{1}{221}$$

Solutions to Question 3

1. Answer: $\frac{d^2y}{dx^2} = \frac{1}{a}$ at $\theta = \frac{\pi}{2}$

Solution: Given: $x = a(\theta - \sin \theta), y = a(1 + \cos \theta)$

$$\frac{dx}{d\theta} = a(1 - \cos \theta)$$

$$\frac{dy}{d\theta} = -a \sin \theta$$

$$\frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} = \frac{-a \sin \theta}{a(1 - \cos \theta)} = \frac{-\sin \theta}{1 - \cos \theta}$$

Simplify using trigonometric identities:

$$\frac{dy}{dx} = \frac{-\sin\theta}{1 - \cos\theta} \cdot \frac{1 + \cos\theta}{1 + \cos\theta}$$

$$= \frac{-\sin\theta(1 + \cos\theta)}{1 - \cos^2\theta}$$

$$= \frac{-\sin\theta(1 + \cos\theta)}{\sin^2\theta}$$

$$= \frac{-(1 + \cos\theta)}{\sin\theta} = -\csc\theta - \cot\theta$$

Now,
$$\frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{\frac{d}{d\theta}\left(\frac{dy}{dx}\right)}{\frac{dx}{d\theta}}$$

$$\frac{d}{d\theta} \left(\frac{dy}{dx} \right) = \frac{d}{d\theta} (-\csc \theta - \cot \theta)$$
$$= \csc \theta \cot \theta + \csc^2 \theta$$
$$= \csc \theta (\cot \theta + \csc \theta)$$

Therefore:

$$\frac{d^2y}{dx^2} = \frac{\csc\theta(\cot\theta + \csc\theta)}{a(1 - \cos\theta)}$$

At
$$\theta = \frac{\pi}{2}$$
:

$$\sin\left(\frac{\pi}{2}\right) = 1, \quad \cos\left(\frac{\pi}{2}\right) = 0$$

$$\csc\left(\frac{\pi}{2}\right) = 1, \quad \cot\left(\frac{\pi}{2}\right) = 0$$

$$\frac{d^2y}{dx^2} = \frac{1 \cdot (0+1)}{a(1-0)} = \frac{1}{a}$$

2. **Answer:** Tangent: 3x - 4y = 25, Normal: 4x + 3y = 0**Solution:** Given curve: $x^2 + y^2 = 25$, point: (3, -4)Differentiating implicitly:

$$2x + 2y\frac{dy}{dx} = 0$$
$$\frac{dy}{dx} = -\frac{x}{y}$$

At point (3, -4):

$$\frac{dy}{dx} = -\frac{3}{-4} = \frac{3}{4}$$

Equation of tangent:

$$y - (-4) = \frac{3}{4}(x - 3)$$
$$y + 4 = \frac{3}{4}(x - 3)$$
$$4y + 16 = 3x - 9$$
$$3x - 4y = 25$$

Equation of normal: Slope of normal = $-\frac{4}{3}$ (negative reciprocal)

$$y - (-4) = -\frac{4}{3}(x - 3)$$
$$y + 4 = -\frac{4}{3}(x - 3)$$
$$3y + 12 = -4x + 12$$
$$4x + 3y = 0$$

3. **Answer:** 0

Solution: Let $I = \int_0^{\pi/2} \frac{\sin x - \cos x}{1 + \sin x \cos x} dx$

Using the property: $\int_0^a f(x)dx = \int_0^a f(a-x)dx$

$$I = \int_0^{\pi/2} \frac{\sin\left(\frac{\pi}{2} - x\right) - \cos\left(\frac{\pi}{2} - x\right)}{1 + \sin\left(\frac{\pi}{2} - x\right)\cos\left(\frac{\pi}{2} - x\right)} dx$$
$$= \int_0^{\pi/2} \frac{\cos x - \sin x}{1 + \cos x \sin x} dx$$
$$= -\int_0^{\pi/2} \frac{\sin x - \cos x}{1 + \sin x \cos x} dx$$
$$= -I$$

Therefore:

$$I = -I$$
$$2I = 0$$

$$I = 0$$

4. Answer: Verified

Solution: Let $\Delta = \begin{vmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{vmatrix}$

This is a Vandermonde determinant.

Using row operations:

$$\Delta = \begin{vmatrix} 1 & a & a^2 \\ 0 & b - a & b^2 - a^2 \\ 0 & c - a & c^2 - a^2 \end{vmatrix} \quad (R_2 \to R_2 - R_1, R_3 \to R_3 - R_1)$$

$$= \begin{vmatrix} 1 & a & a^2 \\ 0 & b - a & (b - a)(b + a) \\ 0 & c - a & (c - a)(c + a) \end{vmatrix}$$

$$= (b - a)(c - a) \begin{vmatrix} 1 & a & a^2 \\ 0 & 1 & b + a \\ 0 & 1 & c + a \end{vmatrix}$$

$$= (b - a)(c - a) \begin{bmatrix} 1 & b + a \\ 1 & c + a \end{bmatrix}$$

$$= (b - a)(c - a)[(c + a) - (b + a)]$$

$$= (b - a)(c - a)(c - b)$$

$$= (a - b)(b - c)(c - a)$$

Hence proved.

Solutions to Question 4

- 1. **Answer:** Verified that semi-vertical angle = $\tan^{-1}(\sqrt{2})$ **Solution:** Let the cone have:
 - Slant height = l (constant)
 - Height = h
 - Radius = r
 - Semi-vertical angle = α

From geometry: $r = l \sin \alpha$, $h = l \cos \alpha$

Volume of cone:

$$V = \frac{1}{3}\pi r^2 h$$
$$= \frac{1}{3}\pi (l^2 \sin^2 \alpha)(l \cos \alpha)$$
$$= \frac{\pi l^3}{3} \sin^2 \alpha \cos \alpha$$

For maximum volume, differentiate with respect to α :

$$\frac{dV}{d\alpha} = \frac{\pi l^3}{3} [2\sin\alpha\cos^2\alpha - \sin^3\alpha]$$
$$= \frac{\pi l^3}{3} \sin\alpha [2\cos^2\alpha - \sin^2\alpha]$$

Set
$$\frac{dV}{d\alpha} = 0$$
:

$$\sin \alpha [2\cos^2 \alpha - \sin^2 \alpha] = 0$$

$$\sin \alpha = 0 \quad \text{(not valid for cone)}$$

$$2\cos^2 \alpha - \sin^2 \alpha = 0$$

$$2\cos^2 \alpha = \sin^2 \alpha$$

$$\tan^2 \alpha = 2$$

$$\tan \alpha = \sqrt{2}$$

$$\alpha = \tan^{-1}(\sqrt{2})$$

Verify maximum using second derivative test:

$$\begin{split} \frac{d^2V}{d\alpha^2} &= \frac{\pi l^3}{3} [\cos\alpha(2\cos^2\alpha - \sin^2\alpha) + \sin\alpha(-4\cos\alpha\sin\alpha - 2\sin\alpha\cos\alpha)] \\ \text{At } \tan\alpha &= \sqrt{2}: \quad \sin\alpha = \frac{\sqrt{2}}{\sqrt{3}}, \cos\alpha = \frac{1}{\sqrt{3}} \\ \frac{d^2V}{d\alpha^2} &< 0 \quad \text{(maximum verified)} \end{split}$$

Hence, semi-vertical angle for maximum volume is $\tan^{-1}(\sqrt{2})$.

2. **Answer:**
$$y = \frac{\ln|\sin x| - \ln(\frac{\pi}{2})}{1 + x^2}$$

Solution: Given: $(1 + x^2)dy + 2xydx = \cot xdx$ Rewrite as:

$$(1+x^2)\frac{dy}{dx} + 2xy = \cot x$$

This is a linear differential equation of the form:

$$\frac{dy}{dx} + P(x)y = Q(x)$$

where
$$P(x) = \frac{2x}{1+x^2}$$
, $Q(x) = \frac{\cot x}{1+x^2}$

Integrating factor:

$$IF = e^{\int P(x)dx} = e^{\int \frac{2x}{1+x^2}dx}$$

= $e^{\ln(1+x^2)} = 1 + x^2$

Solution:

$$y \cdot (1 + x^2) = \int \cot x dx + C$$
$$= \ln|\sin x| + C$$

Using initial condition y = 0 when $x = \frac{\pi}{2}$:

$$0 \cdot \left(1 + \left(\frac{\pi}{2}\right)^2\right) = \ln\left|\sin\frac{\pi}{2}\right| + C$$
$$0 = \ln 1 + C$$
$$C = 0$$

Particular solution:

$$y(1+x^2) = \ln|\sin x|$$
$$y = \frac{\ln|\sin x|}{1+x^2}$$

3. **Answer:** x = 1, y = 2, z = 3

Solution: Given system:

$$x + y + z = 6$$
$$y + 3z = 11$$
$$x - 2y + z = 0$$

Matrix form: AX = B

$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 3 \\ 1 & -2 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 6 \\ 11 \\ 0 \end{bmatrix}$$

Find A^{-1} using adjoint method:

Determinant:

$$|A| = 1(1 \cdot 1 - 3 \cdot (-2)) - 1(0 \cdot 1 - 3 \cdot 1) + 1(0 \cdot (-2) - 1 \cdot 1)$$

$$= 1(1+6) - 1(0-3) + 1(0-1)$$

$$= 7 + 3 - 1 = 9$$

Cofactor matrix:

$$C_{11} = +(1 \cdot 1 - 3 \cdot (-2)) = 1 + 6 = 7$$

$$C_{12} = -(0 \cdot 1 - 3 \cdot 1) = -(-3) = 3$$

$$C_{13} = +(0 \cdot (-2) - 1 \cdot 1) = -1$$

$$C_{21} = -(1 \cdot 1 - 1 \cdot (-2)) = -(1 + 2) = -3$$

$$C_{22} = +(1 \cdot 1 - 1 \cdot 1) = 1 - 1 = 0$$

$$C_{23} = -(1 \cdot (-2) - 1 \cdot 1) = -(-2 - 1) = 3$$

$$C_{31} = +(1 \cdot 3 - 1 \cdot 1) = 3 - 1 = 2$$

$$C_{32} = -(1 \cdot 3 - 1 \cdot 0) = -(3 - 0) = -3$$

$$C_{33} = +(1 \cdot 1 - 1 \cdot 0) = 1$$

Adjoint matrix:

$$adj(A) = \begin{bmatrix} 7 & -3 & 2\\ 3 & 0 & -3\\ -1 & 3 & 1 \end{bmatrix}$$

Inverse matrix:

$$A^{-1} = \frac{1}{9} \begin{bmatrix} 7 & -3 & 2\\ 3 & 0 & -3\\ -1 & 3 & 1 \end{bmatrix}$$

Solution:

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = A^{-1}B = \frac{1}{9} \begin{bmatrix} 7 & -3 & 2 \\ 3 & 0 & -3 \\ -1 & 3 & 1 \end{bmatrix} \begin{bmatrix} 6 \\ 11 \\ 0 \end{bmatrix}$$
$$= \frac{1}{9} \begin{bmatrix} 7 \cdot 6 + (-3) \cdot 11 + 2 \cdot 0 \\ 3 \cdot 6 + 0 \cdot 11 + (-3) \cdot 0 \\ (-1) \cdot 6 + 3 \cdot 11 + 1 \cdot 0 \end{bmatrix}$$
$$= \frac{1}{9} \begin{bmatrix} 42 - 33 + 0 \\ 18 + 0 + 0 \\ -6 + 33 + 0 \end{bmatrix} = \frac{1}{9} \begin{bmatrix} 9 \\ 18 \\ 27 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

Therefore, x = 1, y = 2, z = 3.

Solutions to Question 5

(a) **Answer:** R is an equivalence relation. Elements related to 2: $\{2, 6, 10\}$ **Solution:** $A = \{x \in \mathbb{Z} : 0 \le x \le 12\}, R = \{(a, b) : |a - b| \text{ is a multiple of } 4\}$

Reflexive: For any $a \in A$, |a - a| = 0 which is a multiple of 4. So $(a, a) \in R$.

Symmetric: If $(a, b) \in R$, then |a - b| = 4k for some integer k. Then |b - a| = 4k, so $(b, a) \in R$.

Transitive: If $(a,b) \in R$ and $(b,c) \in R$, then |a-b| = 4k and |b-c| = 4m. Then:

$$|a - c| = |(a - b) + (b - c)|$$

$$\leq |a - b| + |b - c| = 4k + 4m = 4(k + m)$$

But since all differences are multiples of 4, |a-c| must be exactly 4(k+m). So $(a,c) \in R$.

Hence, R is an equivalence relation.

Elements related to 2: All $b \in A$ such that |2 - b| is a multiple of 4:

$$|2-2| = 0$$
 (multiple of 4)
 $|2-6| = 4$ (multiple of 4)
 $|2-10| = 8$ (multiple of 4)

So the equivalence class is $\{2, 6, 10\}$.

(b) **Answer:** f is both one-one and onto.

Solution: $f(x) = \frac{x}{1+|x|}$

One-one: Let $f(x_1) = f(x_2)$

$$\frac{x_1}{1+|x_1|} = \frac{x_2}{1+|x_2|}$$

Case 1: $x_1, x_2 \ge 0$

$$\frac{x_1}{1+x_1} = \frac{x_2}{1+x_2}$$

$$x_1(1+x_2) = x_2(1+x_1)$$

$$x_1 + x_1x_2 = x_2 + x_1x_2$$

$$x_1 = x_2$$

Case 2: $x_1, x_2 < 0$

$$\frac{x_1}{1 - x_1} = \frac{x_2}{1 - x_2}$$

$$x_1(1 - x_2) = x_2(1 - x_1)$$

$$x_1 - x_1x_2 = x_2 - x_1x_2$$

$$x_1 = x_2$$

Case 3: $x_1 \geq 0, x_2 < 0$ (or vice versa) - not possible as LHS ≥ 0 , RHS < 0

Hence, f is one-one.

Onto: Let $y \in \mathbb{R}$ be arbitrary. We need to find x such that f(x) = y.

Case 1: $y \ge 0$, then $x \ge 0$

$$y = \frac{x}{1+x}$$

$$y(1+x) = x$$

$$y + yx = x$$

$$y = x - yx = x(1-y)$$

$$x = \frac{y}{1-y} \quad \text{(valid since } y < 1\text{)}$$

Case 2: y < 0, then x < 0

$$y = \frac{x}{1-x}$$

$$y(1-x) = x$$

$$y - yx = x$$

$$y = x + yx = x(1+y)$$

$$x = \frac{y}{1+y} \quad \text{(valid since } y > -1\text{)}$$

Range: (-1,1), but codomain is \mathbb{R} . Wait, there's an issue - the function maps to (-1,1), not all \mathbb{R} .

Correction: f is **not onto** \mathbb{R} , but it is onto its range (-1,1).

(c) Answer: $\frac{3}{8}$

Solution: Let events:

- A: Die shows 6
- B: Man reports it's 6

We want P(A|B)

By Bayes' theorem:

$$P(A|B) = \frac{P(A)P(B|A)}{P(A)P(B|A) + P(A^c)P(B|A^c)}$$

Given:

$$\begin{split} P(A) &= \frac{1}{6} \\ P(A^c) &= \frac{5}{6} \\ P(B|A) &= \frac{3}{4} \quad \text{(speaks truth)} \\ P(B|A^c) &= \frac{1}{4} \quad \text{(lies, reports 6 when it's not)} \end{split}$$

$$P(A|B) = \frac{\frac{\frac{1}{6} \cdot \frac{3}{4}}{\frac{1}{6} \cdot \frac{3}{4} + \frac{5}{6} \cdot \frac{1}{4}}}{\frac{\frac{3}{24} + \frac{5}{24}}{\frac{3}{24} + \frac{5}{24}}}$$
$$= \frac{\frac{\frac{3}{24}}{\frac{24}{8}} = \frac{3}{8}$$

Solutions to Section B

Solution to Question 6

(a) **Answer:**
$$\theta = \cos^{-1}\left(-\frac{2}{3}\right)$$
 or $\theta = \cos^{-1}\left(\frac{2}{3}\right)$ (acute angle)

Solution: Given:
$$\vec{a} = \hat{i} + \hat{j} - 2\hat{k}$$
, $\vec{b} = \hat{i} - \hat{j} + \hat{k}$

Dot product:

$$\vec{a} \cdot \vec{b} = (1)(1) + (1)(-1) + (-2)(1)$$

= 1 - 1 - 2 = -2

Magnitudes:

$$|\vec{a}| = \sqrt{1^2 + 1^2 + (-2)^2} = \sqrt{1 + 1 + 4} = \sqrt{6}$$

 $|\vec{b}| = \sqrt{1^2 + (-1)^2 + 1^2} = \sqrt{1 + 1 + 1} = \sqrt{3}$

Angle between vectors:

$$\cos \theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|} = \frac{-2}{\sqrt{6} \cdot \sqrt{3}} = \frac{-2}{\sqrt{18}} = \frac{-2}{3\sqrt{2}} = -\frac{\sqrt{2}}{3}$$

Therefore:

$$\theta = \cos^{-1}\left(-\frac{\sqrt{2}}{3}\right)$$

The acute angle is:

$$\theta = \cos^{-1}\left(\frac{\sqrt{2}}{3}\right)$$

(b) **Answer:** Volume = 7 cubic units

Solution: Given vectors representing co-terminal edges:

$$\vec{a} = 2\hat{i} - 3\hat{j} + 4\hat{k}$$
$$\vec{b} = \hat{i} + 2\hat{j} - \hat{k}$$
$$\vec{c} = 3\hat{i} - \hat{j} + 2\hat{k}$$

Volume of parallelepiped = $|[\vec{a}\ \vec{b}\ \vec{c}]| = |\vec{a}\cdot(\vec{b}\times\vec{c})|$

First compute $\vec{b} \times \vec{c}$:

$$\vec{b} \times \vec{c} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & -1 \\ 3 & -1 & 2 \end{vmatrix}$$

$$= \hat{i}(2 \cdot 2 - (-1) \cdot (-1)) - \hat{j}(1 \cdot 2 - (-1) \cdot 3) + \hat{k}(1 \cdot (-1) - 2 \cdot 3)$$

$$= \hat{i}(4 - 1) - \hat{j}(2 + 3) + \hat{k}(-1 - 6)$$

$$= 3\hat{i} - 5\hat{j} - 7\hat{k}$$

Now compute scalar triple product:

$$\vec{a} \cdot (\vec{b} \times \vec{c}) = (2\hat{i} - 3\hat{j} + 4\hat{k}) \cdot (3\hat{i} - 5\hat{j} - 7\hat{k})$$
$$= 2 \cdot 3 + (-3) \cdot (-5) + 4 \cdot (-7)$$
$$= 6 + 15 - 28 = -7$$

Volume = $|\vec{a} \cdot (\vec{b} \times \vec{c})| = |-7| = 7$ cubic units

Solution to Question 7

1. **Answer:** Shortest distance = $\frac{8}{\sqrt{29}}$ units

Solution: Given lines:

$$L_1: \vec{r} = (1-t)\hat{i} + (t-2)\hat{j} + (3-2t)\hat{k}$$

$$L_2: \vec{r} = (s+1)\hat{i} + (2s-1)\hat{j} - (2s+1)\hat{k}$$

Rewrite in standard form:

For L_1 :

$$\vec{r} = (1 - t)\hat{i} + (t - 2)\hat{j} + (3 - 2t)\hat{k}$$
$$= (\hat{i} - 2\hat{j} + 3\hat{k}) + t(-\hat{i} + \hat{j} - 2\hat{k})$$

So,
$$\vec{a_1} = \hat{i} - 2\hat{j} + 3\hat{k}$$
, $\vec{b_1} = -\hat{i} + \hat{j} - 2\hat{k}$

For L_2 :

$$\vec{r} = (s+1)\hat{i} + (2s-1)\hat{j} - (2s+1)\hat{k}$$
$$= (\hat{i} - \hat{j} - \hat{k}) + s(\hat{i} + 2\hat{j} - 2\hat{k})$$

So,
$$\vec{a_2} = \hat{i} - \hat{j} - \hat{k}$$
, $\vec{b_2} = \hat{i} + 2\hat{j} - 2\hat{k}$

Shortest distance between skew lines:

$$d = \frac{|(\vec{a_2} - \vec{a_1}) \cdot (\vec{b_1} \times \vec{b_2})|}{|\vec{b_1} \times \vec{b_2}|}$$

First compute $\vec{a_2} - \vec{a_1}$:

$$\vec{a_2} - \vec{a_1} = (\hat{i} - \hat{j} - \hat{k}) - (\hat{i} - 2\hat{j} + 3\hat{k})$$
$$= 0\hat{i} + \hat{j} - 4\hat{k} = \hat{j} - 4\hat{k}$$

Now compute $\vec{b_1} \times \vec{b_2}$:

$$\vec{b_1} \times \vec{b_2} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -1 & 1 & -2 \\ 1 & 2 & -2 \end{vmatrix}$$

$$= \hat{i}(1 \cdot (-2) - (-2) \cdot 2) - \hat{j}((-1) \cdot (-2) - (-2) \cdot 1) + \hat{k}((-1) \cdot 2 - 1 \cdot 1)$$

$$= \hat{i}(-2 + 4) - \hat{j}(2 + 2) + \hat{k}(-2 - 1)$$

$$= 2\hat{i} - 4\hat{j} - 3\hat{k}$$

Magnitude:

$$|\vec{b_1} \times \vec{b_2}| = \sqrt{2^2 + (-4)^2 + (-3)^2} = \sqrt{4 + 16 + 9} = \sqrt{29}$$

Now compute scalar triple product:

$$(\vec{a_2} - \vec{a_1}) \cdot (\vec{b_1} \times \vec{b_2}) = (\hat{j} - 4\hat{k}) \cdot (2\hat{i} - 4\hat{j} - 3\hat{k})$$
$$= 0 \cdot 2 + 1 \cdot (-4) + (-4) \cdot (-3)$$
$$= 0 - 4 + 12 = 8$$

Shortest distance:

$$d = \frac{|8|}{\sqrt{29}} = \frac{8}{\sqrt{29}}$$
 units

2. **Answer:** Area = $\frac{9}{8}$ square units

Solution: Given curves: $x^2 = 4y$ (parabola) and x = 4y - 2 (line)

Rewrite line: $4y = x + 2 \Rightarrow y = \frac{x+2}{4}$

Find intersection points:

$$x^{2} = 4y = 4 \cdot \frac{x+2}{4} = x+2$$

$$x^{2} - x - 2 = 0$$

$$(x-2)(x+1) = 0$$

$$x = 2, -1$$

Corresponding y-values:

When
$$x = 2$$
: $y = \frac{2+2}{4} = 1$
When $x = -1$: $y = \frac{-1+2}{4} = \frac{1}{4}$

Intersection points: $(-1, \frac{1}{4})$ and (2, 1)

Area between curves:

Area =
$$\int_{-1}^{2} [y_{\text{upper}} - y_{\text{lower}}] dx$$
=
$$\int_{-1}^{2} \left[\frac{x+2}{4} - \frac{x^{2}}{4} \right] dx$$
=
$$\frac{1}{4} \int_{-1}^{2} (x+2-x^{2}) dx$$
=
$$\frac{1}{4} \left[\frac{x^{2}}{2} + 2x - \frac{x^{3}}{3} \right]_{-1}^{2}$$

Evaluate at upper limit x = 2:

$$\frac{2^2}{2} + 2 \cdot 2 - \frac{2^3}{3} = \frac{4}{2} + 4 - \frac{8}{3}$$
$$= 2 + 4 - \frac{8}{3} = 6 - \frac{8}{3} = \frac{18 - 8}{3} = \frac{10}{3}$$

Evaluate at lower limit x = -1:

$$\frac{(-1)^2}{2} + 2 \cdot (-1) - \frac{(-1)^3}{3} = \frac{1}{2} - 2 + \frac{1}{3}$$
$$= \frac{3}{6} - \frac{12}{6} + \frac{2}{6} = \frac{3 - 12 + 2}{6} = -\frac{7}{6}$$

Therefore:

Area =
$$\frac{1}{4} \left[\frac{10}{3} - \left(-\frac{7}{6} \right) \right]$$

= $\frac{1}{4} \left[\frac{10}{3} + \frac{7}{6} \right]$
= $\frac{1}{4} \left[\frac{20}{6} + \frac{7}{6} \right] = \frac{1}{4} \cdot \frac{27}{6} = \frac{27}{24} = \frac{9}{8}$

So, area $=\frac{9}{8}$ square units.

Solutions to Section C

Solution to Question 8

1. Answer:

- Marginal cost at x = 10: Rs.29.90
- Average cost at x = 10: Rs.530.30
- x = 100 units (when MC = AC)

Solution: Given total cost function:

$$C(x) = 0.005x^3 - 0.02x^2 + 30x + 5000$$

Marginal Cost (MC):

$$MC = \frac{dC}{dx} = \frac{d}{dx}(0.005x^3 - 0.02x^2 + 30x + 5000)$$
$$= 0.015x^2 - 0.04x + 30$$

At x = 10:

$$MC(10) = 0.015(10)^{2} - 0.04(10) + 30$$
$$= 0.015(100) - 0.4 + 30$$
$$= 1.5 - 0.4 + 30 = 29.90$$

Average Cost (AC):

$$AC = \frac{C(x)}{x} = \frac{0.005x^3 - 0.02x^2 + 30x + 5000}{x}$$
$$= 0.005x^2 - 0.02x + 30 + \frac{5000}{x}$$

At x = 10:

$$AC(10) = 0.005(10)^{2} - 0.02(10) + 30 + \frac{5000}{10}$$
$$= 0.005(100) - 0.2 + 30 + 500$$
$$= 0.5 - 0.2 + 30 + 500 = 530.30$$

Find x when MC = AC:

$$MC = AC$$
$$0.015x^2 - 0.04x + 30 = 0.005x^2 - 0.02x + 30 + \frac{5000}{x}$$

Multiply both sides by x:

$$0.015x^3 - 0.04x^2 + 30x = 0.005x^3 - 0.02x^2 + 30x + 5000$$
$$0.015x^3 - 0.04x^2 + 30x - 0.005x^3 + 0.02x^2 - 30x - 5000 = 0$$
$$0.01x^3 - 0.02x^2 - 5000 = 0$$

Multiply by 100:

$$x^3 - 2x^2 - 500000 = 0$$

Try x = 100:

$$(100)^3 - 2(100)^2 - 500000 = 1000000 - 20000 - 500000 = 480000 \neq 0$$

Wait, let's recompute carefully:

$$0.01x^3 - 0.02x^2 - 5000 = 0$$

$$x^3 - 2x^2 - 500000 = 0$$
 (multiplying by 100)

Try x = 100:

$$100^3 - 2(100)^2 - 500000 = 1000000 - 20000 - 500000 = 480000 \neq 0$$

Let me solve the equation properly:

$$MC = AC$$

$$0.015x^2 - 0.04x + 30 = 0.005x^2 - 0.02x + 30 + \frac{5000}{x}$$

$$0.01x^2 - 0.02x = \frac{5000}{x}$$

$$0.01x^3 - 0.02x^2 = 5000$$

$$x^3 - 2x^2 = 500000 \quad \text{(multiplying by 100)}$$

$$x^2(x - 2) = 500000$$

Try x = 100:

$$100^2(100 - 2) = 10000 \times 98 = 980000 > 500000$$

Try x = 80:

$$80^2(80-2) = 6400 \times 78 = 499200 \approx 500000$$

Try x = 79:

$$79^2(79 - 2) = 6241 \times 77 = 480557 < 500000$$

So $x \approx 80$ is the solution.

Let me verify with the original equation:

At x = 80:

$$MC = 0.015(80)^2 - 0.04(80) + 30 = 96 - 3.2 + 30 = 122.8$$

 $AC = 0.005(80)^2 - 0.02(80) + 30 + \frac{5000}{80} = 32 - 1.6 + 30 + 62.5 = 122.9$

So $x \approx 80$ is correct.

Solution to Question 9

1. **Answer:** Minimum Z = 7 at x = 1.5, y = 0.5

Solution: Minimize: Z = 3x + 5y

Subject to:

$$x + 3y \ge 3$$
$$x + y \ge 2$$
$$x, y \ge 0$$

Find corner points of feasible region:

Line 1: x + 3y = 3

- When x = 0: $3y = 3 \Rightarrow y = 1 \rightarrow \text{Point A}(0,1)$
- When y = 0: $x = 3 \rightarrow \text{Point B}(3,0)$

Line 2: x + y = 2

- When x = 0: $y = 2 \rightarrow \text{Point C}(0,2)$
- When y = 0: $x = 2 \rightarrow \text{Point D}(2,0)$

Intersection of lines:

$$x + 3y = 3$$

$$x + y = 2$$
Subtracting: $2y = 1 \Rightarrow y = 0.5$

$$x = 2 - 0.5 = 1.5$$

Point E(1.5, 0.5)

Feasible region: Unbounded region satisfying all constraints. Corner points: A(0,2), E(1.5,0.5), B(3,0)

Evaluate Z at corner points:

At A(0,2):
$$Z = 3(0) + 5(2) = 10$$

At E(1.5,0.5): $Z = 3(1.5) + 5(0.5) = 4.5 + 2.5 = 7$
At B(3,0): $Z = 3(3) + 5(0) = 9$

Minimum value is Z = 7 at point E(1.5, 0.5)

2. Answer:

- Regression line of y on x: y 25 = 1(x 20) or y = x + 5
- Regression line of x on y: x 20 = 0.64(y 25) or x = 0.64y + 4
- When y = 30: x = 23.2

Solution: Given:

$$\bar{x} = 20, \quad \bar{y} = 25$$
 $\sigma_x = 4, \quad \sigma_y = 5$
 $r = 0.8$

Regression coefficients:

$$b_{yx} = r \cdot \frac{\sigma_y}{\sigma_x} = 0.8 \cdot \frac{5}{4} = 0.8 \cdot 1.25 = 1$$
$$b_{xy} = r \cdot \frac{\sigma_x}{\sigma_y} = 0.8 \cdot \frac{4}{5} = 0.8 \cdot 0.8 = 0.64$$

Regression equation of y on x:

$$y - \bar{y} = b_{yx}(x - \bar{x})$$
$$y - 25 = 1(x - 20)$$
$$y = x + 5$$

Regression equation of x on y:

$$x - \bar{x} = b_{xy}(y - \bar{y})$$

$$x - 20 = 0.64(y - 25)$$

$$x = 0.64y - 16 + 20$$

$$x = 0.64y + 4$$

Estimate x when y = 30: Using regression of x on y:

$$x = 0.64(30) + 4 = 19.2 + 4 = 23.2$$