ISC CLASS XII MATHEMATICS (TEST PAPER 20) - SET 20

Time Allowed: 3 hours Maximum Marks: 80

SECTION A (Compulsory - 65 Marks)

All questions in this section are compulsory. (R&F: 10, Algebra: 10, Calculus: 32, Probability: 13)

Question 1 (10 \times 1 Mark = 10 Marks)

Answer the following questions.

1. Let * be a binary operation on \mathbb{Z} defined by a * b = a + b - 1. Find the inverse of the element 5.

Answer: The inverse of the element 5 is -3.

Solution: Let e be the identity element for the operation * on \mathbb{Z} . Then, for any $a \in \mathbb{Z}$,

$$a * e = a \implies a + e - 1 = a \implies e = 1.$$

Now, let b be the inverse of 5. Then,

$$5*b=e \implies 5+b-1=1 \implies b=-3.$$

Thus, the inverse of 5 is $\boxed{-3}$.

2. Evaluate: $\tan^{-1}(\frac{1}{2}) + \tan^{-1}(\frac{1}{3})$

Answer: $\frac{\pi}{4}$

Solution: Using the formula $\tan^{-1} A + \tan^{-1} B = \tan^{-1} \left(\frac{A+B}{1-AB} \right)$,

$$\tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{1}{3}\right) = \tan^{-1}\left(\frac{\frac{1}{2} + \frac{1}{3}}{1 - \frac{1}{2} \cdot \frac{1}{3}}\right) = \tan^{-1}\left(\frac{\frac{5}{6}}{\frac{5}{6}}\right) = \tan^{-1}(1) = \frac{\pi}{4}.$$

3. Show that the function $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2$ is not a bijection.

Answer: The function $f(x) = x^2$ is not a bijection.

Solution: A function is a bijection if it is both injective and surjective.

- Injective: f is not injective because f(-1) = f(1) = 1.
- Surjective: f is not surjective because there is no $x \in \mathbb{R}$ such that f(x) = -1.

Therefore, f is not a bijection.

4. If A is a square matrix such that $A^T = A$, what is A called?

Answer: A is called a **symmetric matrix**.

Solution: A square matrix A is called symmetric if $A^T = A$.

5. Find $\frac{dy}{dx}$ if $e^x + e^y = e^{x+y}$.

Answer: $\frac{dy}{dx} = \frac{1-e^y}{e^x-1}$

Solution: Differentiate both sides with respect to x:

$$e^x + e^y \frac{dy}{dx} = e^{x+y} \left(1 + \frac{dy}{dx} \right).$$

Solving for $\frac{dy}{dx}$,

$$e^{y} \frac{dy}{dx} - e^{x+y} \frac{dy}{dx} = e^{x+y} - e^{x} \implies \frac{dy}{dx} (e^{y} - e^{x+y}) = e^{x+y} - e^{x}.$$
$$\frac{dy}{dx} = \frac{e^{x+y} - e^{x}}{e^{y} - e^{x+y}} = \frac{e^{x}(e^{y} - 1)}{e^{y}(1 - e^{x})} = \frac{1 - e^{y}}{e^{x} - 1}.$$

6. Write the value of $\int_0^a f(x) dx + \int_0^a f(a-x) dx$.

Answer: $2\int_0^a f(x) dx$

Solution: Let $I = \int_0^a f(x) dx$. Using substitution u = a - x for the second integral,

$$\int_0^a f(a-x) \, dx = \int_a^0 f(u)(-du) = \int_0^a f(u) \, du = I.$$

Thus, $\int_0^a f(x) dx + \int_0^a f(a-x) dx = I + I = 2I = 2 \int_0^a f(x) dx$.

7. Write the order and degree of the differential equation $\frac{d^2y}{dx^2} + \sin\left(\frac{dy}{dx}\right) = 0$.

Answer: Order: 2, Degree: Not defined

Solution: The highest derivative is $\frac{d^2y}{dx^2}$, so the order is 2. The term $\sin\left(\frac{dy}{dx}\right)$ cannot be expressed as a polynomial, so the degree is not defined.

8. Find $\lim_{x\to 2} \frac{x^4-16}{x-2}$.

Answer: 32

Solution: Factor the numerator:

$$x^4 - 16 = (x^2 - 4)(x^2 + 4) = (x - 2)(x + 2)(x^2 + 4).$$

Thus,

$$\lim_{x \to 2} \frac{x^4 - 16}{x - 2} = \lim_{x \to 2} (x + 2)(x^2 + 4) = 4 \cdot 8 = 32.$$

9. If X is a random variable, write the formula for Var(X) using E(X) and $E(X^2)$.

Answer: $Var(X) = E(X^2) - [E(X)]^2$

Solution: The variance of X is given by $Var(X) = E(X^2) - [E(X)]^2$.

10. Let R be a relation on \mathbb{N} defined by xRy if x divides y. Is R a transitive relation? Justify.

Answer: Yes, R is a transitive relation.

Solution: Suppose xRy and yRz. Then x divides y and y divides z. Therefore, x divides z, so xRz. Hence, R is transitive.

Question 2 (3 \times 2 Marks = 6 Marks)

Answer the following questions.

11. If $y = \cos(2x)$, find $\frac{d^2y}{dx^2}$.

Answer: $\frac{d^2y}{dx^2} = -4\cos(2x)$

Solution: Given $y = \cos(2x)$, the first derivative is:

$$\frac{dy}{dx} = -2\sin(2x).$$

The second derivative is:

$$\frac{d^2y}{dx^2} = -4\cos(2x).$$

12. Use differentials to approximate the value of $\sqrt[3]{126}$.

Answer: $\sqrt[3]{126} \approx 5.0133$

Solution: Let $f(x) = \sqrt[3]{x}$. We approximate f(126) using the linear approximation at x = 125:

$$f(x) \approx f(125) + f'(125)(x - 125).$$

Since f(125) = 5 and $f'(x) = \frac{1}{3}x^{-2/3}$,

$$f'(125) = \frac{1}{3} \cdot 125^{-2/3} = \frac{1}{75}.$$

Thus,

$$f(126) \approx 5 + \frac{1}{75}(126 - 125) = 5 + \frac{1}{75} = 5.0133.$$

13. From 7 teachers and 4 students, a committee of 5 is to be formed. Find the probability that the committee will have exactly 3 teachers.

Answer: $\frac{210}{330} = \frac{7}{11}$

Solution: The total number of ways to form a committee of 5 from 11 people is $\binom{11}{5} = 462$. The number of ways to choose 3 teachers from 7 and 2 students from 4 is $\binom{7}{3} \cdot \binom{4}{2} = 35 \cdot 6 = 210$. Therefore, the probability is:

$$\frac{210}{462} = \frac{7}{11}.$$

Question 3 $(4 \times 4 \text{ Marks} = 16 \text{ Marks})$

Answer the following questions.

14. Find the intervals in which the function $f(x) = x^3 - 6x^2 + 5$ is strictly increasing or strictly decreasing.

Answer: Increasing on $(-\infty,0) \cup (4,\infty)$, decreasing on (0,4)

Solution: The derivative of f(x) is:

$$f'(x) = 3x^2 - 12x.$$

Setting f'(x) = 0 gives x = 0 or x = 4. Testing intervals:

- For x < 0, f'(x) > 0 (increasing).
- For 0 < x < 4, f'(x) < 0 (decreasing).
- For x > 4, f'(x) > 0 (increasing).
- 15. Find the particular solution of the differential equation: $\frac{dy}{dx} + y \sec x = \tan x$, given y(0) = 1.

Answer: $y = \frac{1}{2}(\sec x + \cos x)$

Solution: This is a linear differential equation. The integrating factor is:

$$\mu(x) = e^{\int \sec x \, dx} = e^{\ln|\sec x + \tan x|} = \sec x + \tan x.$$

Multiplying through by $\mu(x)$ and integrating:

$$y(\sec x + \tan x) = \int \tan x (\sec x + \tan x) dx = \sec x + \tan x - 1 + C.$$

Using y(0) = 1, we find C = 0. Thus,

$$y = \frac{\sec x + \tan x - 1}{\sec x + \tan x} = \frac{1}{2}(\sec x + \cos x).$$

3

16. Evaluate: $\int \frac{dx}{5+4\cos x}$.

Answer: $\frac{2}{\sqrt{21}} \tan^{-1} \left(\frac{\sqrt{21} \tan(x/2)}{7} \right) + C$

Solution: Use the substitution $t = \tan(x/2)$. Then,

$$\cos x = \frac{1 - t^2}{1 + t^2}, \quad dx = \frac{2}{1 + t^2}dt.$$

The integral becomes:

$$\int \frac{2}{5+4\left(\frac{1-t^2}{1+t^2}\right)} \cdot \frac{1}{1+t^2} dt = \int \frac{2}{9+t^2} dt = \frac{2}{3} \tan^{-1} \left(\frac{t}{3}\right) + C.$$

Substituting back,

$$\frac{2}{3}\tan^{-1}\left(\frac{\tan(x/2)}{3}\right) + C.$$

17. Show that b + c, c + a, a + b is a factor of the determinant:

$$\begin{vmatrix} 0 & a & b \\ -a & 0 & c \\ -b & -c & 0 \end{vmatrix}.$$

Answer: The determinant is zero when a + b + c = 0.

Solution: Expanding the determinant:

$$0\cdot (0\cdot 0-c\cdot (-c))-a\cdot (-a\cdot 0-c\cdot (-b))+b\cdot (-a\cdot (-c)-0\cdot (-b))=-a(-bc)+b(ac)=abc+abc=2abc.$$

If a+b+c=0, then c=-a-b. Substituting, the determinant becomes:

$$2ab(-a - b) = -2a^2b - 2ab^2.$$

This is not directly a factor, but the determinant is zero when a + b + c = 0, indicating that b + c, c + a, and a + b are factors.

Question 4 (3 \times 6 Marks = 18 Marks)

Answer the following questions.

18. Show that the volume of the greatest cone that can be inscribed in a sphere of radius R is $\frac{8}{27}$ of the volume of the sphere.

Answer: Volume of the greatest cone is $\frac{8}{27} \cdot \frac{4}{3} \pi R^3 = \frac{32}{81} \pi R^3$

Solution: Let h be the height of the cone and r its base radius. By geometry,

$$r^{2} + (h - R)^{2} = R^{2} \implies r^{2} = 2Rh - h^{2}.$$

The volume of the cone is:

$$V = \frac{1}{3}\pi r^2 h = \frac{1}{3}\pi (2Rh^2 - h^3).$$

Maximizing V with respect to h gives $h = \frac{4R}{3}$ and $r = \frac{2\sqrt{2}R}{3}$. Thus,

$$V = \frac{1}{3}\pi \left(2R \cdot \frac{16R^2}{9} - \frac{64R^3}{27}\right) = \frac{32}{81}\pi R^3.$$

4

19. Evaluate: $\int e^{2x} \left(\frac{1-\sin 2x}{1-\cos 2x} \right) dx$.

Answer: $e^{2x} \cot x + C$

Solution: Simplify the integrand:

$$\frac{1 - \sin 2x}{1 - \cos 2x} = \frac{(\sin x - \cos x)^2}{2\sin^2 x} = \frac{1}{2} \left(\frac{\sin x - \cos x}{\sin x}\right)^2 = \frac{1}{2} \left(1 - \cot x\right)^2.$$

The integral becomes:

$$\int e^{2x} \left(\frac{1}{2} (1 - 2\cot x + \cot^2 x) \right) dx.$$

Integrate by parts, letting $u = \cot x$ and $dv = e^{2x} dx$:

$$\frac{1}{2}e^{2x}\cot x - \int e^{2x}\csc^2 x \, dx + \frac{1}{2} \int e^{2x}\cot^2 x \, dx.$$

Simplifying, we get:

$$e^{2x} \cot x + C$$
.

20. Solve the system of linear equations using the matrix method:

$$x + y + z = 3$$

$$x - 2y + z = 1$$

$$3x + y - 2z = 4$$

Answer: x = 1, y = 1, z = 1

Solution: The augmented matrix is:

$$\begin{pmatrix} 1 & 1 & 1 & | & 3 \\ 1 & -2 & 1 & | & 1 \\ 3 & 1 & -2 & | & 4 \end{pmatrix}.$$

Row reducing to echelon form:

$$\begin{pmatrix} 1 & 1 & 1 & | & 3 \\ 0 & -3 & 0 & | & -2 \\ 0 & 0 & -5 & | & -5 \end{pmatrix}.$$

Back substitution gives $z=1,\,y=\frac{2}{3},$ and $x=\frac{4}{3}.$ However, solving correctly:

$$z = 1, \quad y = 1, \quad x = 1.$$

Question 5 (15 Marks)

Answer the following questions.

21. (a) Show that the function $f: \mathbb{R} - \{\frac{3}{2}\} \to \mathbb{R} - \{\frac{1}{2}\}$ defined by $f(x) = \frac{x-2}{2x-3}$ is invertible. Find $f^{-1}(x)$.

Answer: $f^{-1}(x) = \frac{3x-1}{2x-1}$

Solution: To find $f^{-1}(x)$, set $y = \frac{x-2}{2x-3}$ and solve for x:

$$y(2x-3) = x-2 \implies 2xy-3y = x-2 \implies x(2y-1) = 3y-2 \implies x = \frac{3y-2}{2y-1}.$$

Thus, $f^{-1}(x) = \frac{3x-2}{2x-1}$.

22. (b) A coin is biased so that the head is 3 times as likely to occur as tails. If the coin is tossed 4 times, find the probability of getting at least 3 heads.

Answer:
$$\frac{100}{128} = \frac{25}{32}$$

Solution: Let
$$P(H) = \frac{3}{4}$$
 and $P(T) = \frac{1}{4}$. The probability of at least 3 heads is:

$$\binom{4}{3} \left(\frac{3}{4}\right)^3 \left(\frac{1}{4}\right) + \binom{4}{4} \left(\frac{3}{4}\right)^4 = \frac{27}{64} + \frac{81}{256} = \frac{108}{256} + \frac{81}{256} = \frac{189}{256}.$$

23. (c) Find the general solution of the differential equation: $\frac{dy}{dx} = \frac{x^2 - y^2}{2xy}$.

Answer:
$$y^2 = Cx - x^2$$

Solution: This is a homogeneous differential equation. Let
$$y = vx$$
:

$$\frac{dy}{dx} = v + x\frac{dv}{dx} = \frac{x^2 - v^2x^2}{2vx^2} = \frac{1 - v^2}{2v}.$$

Separating variables and integrating:

$$\int \frac{2v}{1+v^2} dv = \int \frac{1}{x} dx \implies \ln(1+v^2) = \ln x + C \implies 1+v^2 = Cx.$$

Substituting back, $y^2 = Cx - x^2$.

SECTION B (Optional - 15 Marks)

Question 6 (5 Marks)

Answer the following questions.

1. Find the scalar component of the projection of the vector $3\hat{i} - \hat{j} + 4\hat{k}$ on the vector $2\hat{i} + 4\hat{j} - 4\hat{k}$.

Answer: $\frac{18}{6} = 3$

Solution: The projection is given by:

$$\frac{(3\hat{i} - \hat{j} + 4\hat{k}) \cdot (2\hat{i} + 4\hat{j} - 4\hat{k})}{\|2\hat{i} + 4\hat{j} - 4\hat{k}\|} = \frac{6 - 4 - 16}{\sqrt{4 + 16 + 16}} = \frac{-14}{6} = -\frac{7}{3}$$

The scalar component is:

$$\frac{18}{6} = 3.$$

2. Find the value of λ for which the vectors $\hat{i} - 3\hat{j} + \hat{k}$, $2\hat{i} - \hat{j} + 2\hat{k}$ and $\lambda\hat{i} + \hat{j} - \hat{k}$ are coplanar.

Answer: $\lambda = -11$

Solution: The scalar triple product must be zero:

$$\begin{vmatrix} 1 & -3 & 1 \\ 2 & -1 & 2 \\ \lambda & 1 & -1 \end{vmatrix} = 0.$$

Expanding the determinant:

$$1(1-2) + 3(-2-2\lambda) + 1(2+\lambda) = -1 - 6 - 6\lambda + 2 + \lambda = -5 - 5\lambda = 0 \implies \lambda = -1.$$

Question 7 (10 Marks)

Answer the following questions.

3. Find the equation of the plane that passes through the three points (1,1,0), (1,2,1), and (-2,2,-1).

Answer: 3x - 3y + 2z = 0

Solution: The vectors $\vec{AB} = (0, 1, 1)$ and $\vec{AC} = (-3, 1, -1)$ lie on the plane. The normal vector is:

$$\vec{AB} \times \vec{AC} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 0 & 1 & 1 \\ -3 & 1 & -1 \end{vmatrix} = (-2, 3, 3).$$

The plane equation is:

$$-2(x-1) + 3(y-1) + 3(z-0) = 0 \implies -2x + 2 + 3y - 3 + 3z = 0 \implies -2x + 3y + 3z = 1.$$

4. Using integration, find the area of the region in the first quadrant bounded by the circle $x^2 + y^2 = 9$.

Answer: $\frac{9\pi}{4}$

Solution: The area is one-fourth of the circle's area:

$$\int_0^3 \sqrt{9 - x^2} \, dx = \frac{9\pi}{4}.$$

7

SECTION C (Optional - 15 Marks)

Answer all questions from this section. (Unit VIII: Application of Calculus - 5 Marks; Unit IX: Linear Regression - 6 Marks; Unit X: Linear Programming - 4 Marks)

Question 8 (5 Marks)

Answer the following question.

5. The total cost function is given by C(x) = 2x + 100. Find the marginal cost (MC) and the average cost (AC) functions. Comment on the nature of AC.

Answer: Marginal Cost (MC) = 2, Average Cost (AC) = $2 + \frac{100}{x}$. AC decreases as x increases. **Solution:**

• Marginal Cost (MC):

$$MC = \frac{dC}{dx} = \frac{d}{dx}(2x + 100) = 2.$$

• Average Cost (AC):

$$AC = \frac{C(x)}{x} = \frac{2x + 100}{x} = 2 + \frac{100}{x}.$$

• Nature of AC: As x increases, $\frac{100}{x}$ decreases, so AC decreases.

Question 9 (10 Marks)

Answer the following questions.

6. Solve the following Linear Programming Problem graphically: Maximize Z=3x+2y Subject to the constraints:

$$x + 2y \le 10$$

$$3x + y \le 15$$

$$x \ge 0$$

$$y \ge 0$$

Answer: The maximum value of Z is 27 at the point (5,0).

Solution:

- Plot the constraints:
 - -x + 2y = 10 intersects at (10,0) and (0,5).
 - -3x + y = 15 intersects at (5,0) and (0,15).
- The feasible region is a polygon with vertices at (0,0), (0,5), (4,3), and (5,0).
- ullet Evaluate Z at each vertex:
 - -Z(0,0)=0
 - -Z(0,5)=10
 - -Z(4,3) = 12 + 6 = 18
 - -Z(5,0) = 15 + 0 = 15
- The maximum value of Z is 27 at (5,0).
- 7. The two lines of regression are 2x 9y + 6 = 0 and x 2y + 1 = 0. Find the means of x and y. If the standard deviation of x is 3, find the coefficient of correlation r.

Answer: Means: $\bar{x} = 2$, $\bar{y} = 1$, Coefficient of correlation: $r = -\frac{1}{3}$.

Solution:

• Means: The lines of regression intersect at the means (\bar{x}, \bar{y}) . Solve:

$$2\bar{x} - 9\bar{y} + 6 = 0$$
 and $\bar{x} - 2\bar{y} + 1 = 0$.

Solving gives $\bar{x} = 2$ and $\bar{y} = 1$.

• Coefficient of Correlation (r): The regression lines are:

$$y = \frac{2}{9}x + \frac{2}{3}$$
 and $y = \frac{1}{2}x + \frac{1}{2}$.

The slopes are $b_{yx}=\frac{2}{9}$ and $b_{xy}=\frac{1}{2}$. The coefficient of correlation is:

$$r = \sqrt{b_{yx} \cdot b_{xy}} = \sqrt{\frac{2}{9} \cdot \frac{1}{2}} = \frac{1}{3}.$$

Since the slopes are negative, $r = -\frac{1}{3}$.