# PRACTICE QUESTION PAPER - V (Corrected) CLASS XII - MATHEMATICS (041)

Time Allowed: 3 Hours Maximum Marks: 80

#### General Instructions:

- 1. This Question Paper contains 38 questions. All questions are compulsory.
- 2. The question paper is divided into FIVE Sections A, B, C, D and E.
- 3. Section A comprises of 20 questions of 1 mark each. (18 MCQs + 2 Assertion-Reasoning)
- 4. Section B comprises of 5 questions of 2 marks each.
- 5. Section C comprises of 6 questions of 3 marks each.
- 6. Section **D** comprises of **4** questions of **5** marks each.
- 7. Section E comprises of 3 Case Study Based Questions of 4 marks each.
- 8. There is no overall choice in the question paper. However, an internal choice has been provided in 2 questions in Section B, 3 questions in Section C, 2 questions in Section D and 2 questions in Section E (in the sub-parts).
- 9. Use of calculators is **not** permitted.

# SECTION A (20 Marks)

This section comprises 20 questions of 1 mark each. Questions 1-18 are Multiple Choice Questions (MCQs) and questions 19-20 are Assertion-Reason based questions.

### Multiple Choice Questions (MCQs)

- 1. Let  $f: \mathbb{R} \to \mathbb{R}$  be defined by  $f(x) = \frac{x}{1+|x|}$ . Then f is:
  - (a) One-one but not onto
  - (b) Onto but not one-one
  - (c) Both one-one and onto
  - (d) Neither one-one nor onto
- 2. The number of relations on the set  $\{a,b\}$  that contain (a,b) and (b,a) and are reflexive is:
  - (a) 2
  - (b) 4
  - (c) 6
  - (d) 8
- 3. The value of  $\cos^{-1}(\cos\frac{7\pi}{6})$  is:
  - (a)  $\frac{7\pi}{6}$
  - (b)  $\frac{5\pi}{6}$
  - (c)  $\frac{\pi}{6}$
  - (d)  $-\frac{\pi}{6}$
- 4. The domain of  $f(x) = \tan^{-1}(\sqrt{x^2 1})$  is:
  - (a)  $(-\infty, -1] \cup [1, \infty)$
  - (b) [-1,1]
  - (c)  $(-\infty, \infty)$
  - (d)  $(-\infty, -1) \cup (1, \infty)$

- 5. If f(x) = [x] (greatest integer function) and g(x) = |x|, then  $f \circ g\left(-\frac{5}{3}\right)$  is:
  - (a) -2
  - (b) -1
  - (c) 1
  - (d) 2
- 6. If  $A = \begin{bmatrix} \alpha & 2 \\ 2 & \alpha \end{bmatrix}$  and  $|A^3| = 125$ , then the value of  $\alpha$  is:
  - (a)  $\pm 1$
  - (b)  $\pm 3$
  - (c)  $\pm 5$
  - (d)  $\pm 7$
- 7. If A is a square matrix, then  $A A^T$  is a:
  - (a) Symmetric matrix
  - (b) Skew-symmetric matrix
  - (c) Identity matrix
  - (d) Diagonal matrix
- 8. The maximum number of non-zero entries in a  $3 \times 3$  upper triangular matrix is:
  - (a) 3
  - (b) 4
  - (c) 6
  - (d) 9
- 9. Let A be a non-singular matrix of order 2. If  $A = \begin{bmatrix} 4 & 2 \\ 3 & 1 \end{bmatrix}$ , then  $(A^T)^{-1}$  is equal to:
  - (a)  $\begin{bmatrix} -1/2 & 1\\ 3/2 & -2 \end{bmatrix}$
  - (b)  $\begin{bmatrix} -1/2 & 3/2 \\ 1 & -2 \end{bmatrix}$
  - $(c) \begin{bmatrix} 1 & -1/2 \\ -2 & 3/2 \end{bmatrix}$
  - $(d) \begin{bmatrix} 4 & 3 \\ 2 & 1 \end{bmatrix}$
- 10. If  $\begin{vmatrix} 2 & 3 \\ 4 & 5 \end{vmatrix} = \begin{vmatrix} x & 3 \\ 2x & 5 \end{vmatrix}$ , then x equals:
  - (a) -1
  - (b) 2
  - (c) -2
  - (d) 1
- 11. The value of  $\int_0^{\pi/2} \log(\cot x) dx$  is:
  - (a)  $\frac{\pi}{2}$
  - (b)  $\frac{\pi}{4}$
  - (c) 0

- (d) log 2
- 12. If  $\log_e(xy) = x^2 + y^2$ , then  $\frac{dy}{dx}$  is:
  - (a)  $\frac{y(2x^2-1)}{x(1-2y^2)}$
  - (b)  $\frac{y(1-2x^2)}{x(2y^2-1)}$
  - (c)  $\frac{x(1-2y^2)}{y(2x^2-1)}$
  - (d)  $\frac{2x^2-1}{1-2y^2}$
- 13. The integrating factor of the differential equation  $\frac{dy}{dx} + y \cot x = 2x + x^2 \cot x$  is:
  - (a)  $\sin x$
  - (b)  $\csc x$
  - (c)  $\log(\sin x)$
  - (d)  $\tan x$
- 14. The slope of the tangent to the curve  $x = t^2 + 3t 8$ ,  $y = 2t^2 2t 5$  at the point (2, -1) is:
  - (a)  $\frac{6}{7}$
  - (b)  $\frac{2}{3}$
  - (c)  $\frac{7}{6}$
  - (d)  $\frac{2}{7}$
- 15. The intervals in which the function  $f(x) = 4 \sin x$  is strictly increasing in  $(0, 2\pi)$  are:
  - (a)  $(0, \frac{\pi}{2})$
  - (b)  $(\frac{\pi}{2}, \frac{3\pi}{2})$
  - (c)  $\left(0, \frac{\pi}{2}\right) \cup \left(\frac{3\pi}{2}, 2\pi\right)$
  - (d)  $(\pi, 2\pi)$
- 16. The general solution of the differential equation  $\frac{dy}{dx} = 2^{y-x}$  is:
  - (a)  $2^{-y} = 2^{-x} + C$
  - (b)  $2^{-y} = \log_2 e \cdot 2^{-x} + C$
  - (c)  $-2^{-y} = \log_2 e \cdot 2^{-x} + C$
  - (d)  $-2^{-y} = \frac{2^{-x}}{\log 2} + C$
- 17. The shortest distance between the x-axis and the y-axis is:
  - (a) 0
  - (b) 1
  - (c) 2
  - (d)  $\infty$
- 18. The cosine of the angle between any two diagonals of a cube is:
  - (a)  $\frac{1}{2}$
  - (b)  $\frac{1}{3}$
  - (c)  $\frac{1}{\sqrt{3}}$
  - (d) 0

### Assertion-Reasoning Based Questions

Questions 19 and 20 are Assertion-Reasoning based questions. In these questions, a statement of Assertion (A) is followed by a statement of Reason (R). Choose the correct answer from the following options:

- (a) Both A and R are true and R is the correct explanation of A.
- (b) Both A and R are true but R is not the correct explanation of A.
- (c) A is true but R is false.
- (d) A is false but R is true.
- 19. Assertion (A): The vector  $\vec{a} = \hat{i} + \hat{j} \hat{k}$  is perpendicular to  $\vec{b} = 2\hat{i} \hat{j} + \hat{k}$ . Reason (R): Two vectors  $\vec{a}$  and  $\vec{b}$  are perpendicular if  $\vec{a} \cdot \vec{b} = 0$ .
- 20. Assertion (A): If A and B are two events, then  $P(A \cap B) \leq P(A)$ . Reason (R): The event  $A \cap B$  is a subset of the event A.

# SECTION B (10 Marks)

This section comprises 5 questions of 2 marks each.

- 21. Find  $\frac{dy}{dx}$  if  $y = \tan^{-1}\left(\frac{5x}{1-6x^2}\right)$ , where  $-\frac{1}{\sqrt{6}} < x < \frac{1}{\sqrt{6}}$ .
- 22. If the points A(-1,3,2), B(-4,2,-2) and  $C(5,5,\lambda)$  are collinear, find the value of  $\lambda$ .

#### OR

Find the unit vector perpendicular to both  $\vec{a} = 2\hat{i} - 6\hat{j} - 3\hat{k}$  and  $\vec{b} = 4\hat{i} + 3\hat{j} - \hat{k}$ .

23. Show that  $y = ce^{-\frac{1}{x}}$  is a solution of the differential equation  $x^2 \frac{dy}{dx} = y$ .

#### OR

Find the derivative of  $\cos^{-1}(2x^2-1)$  with respect to  $\sqrt{1-x^2}$ .

- 24. Find the value of x such that  $\begin{bmatrix} 1 & x & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 & 2 \\ 2 & 5 & 1 \\ 15 & 3 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ x \end{bmatrix} = 0$ .
- 25. A family has two children. What is the probability that both are boys, given that at least one of them is a boy?

# SECTION C (18 Marks)

This section comprises 6 questions of 3 marks each.

- 26. Prove that  $\sin^{-1}\left(\frac{4}{5}\right) + \cos^{-1}\left(\frac{12}{13}\right) = \sin^{-1}\left(\frac{56}{65}\right)$ .
- 27. Evaluate  $\int \frac{x^2 1}{(x 1)^2 (x + 2)} dx$ .

OR

Evaluate  $\int_1^3 \frac{\sqrt{x}}{\sqrt{x} + \sqrt{4-x}} dx$ .

28. Find the equation of the normal to the curve  $x^2 = 4y$  which passes through the point (1,2).

#### OR

Find the general solution of the differential equation  $(x^2 + xy) dy = x^2 dx$ .

29. Find the shortest distance between the lines  $\frac{x}{1} = \frac{y-1}{0} = \frac{z+1}{1}$  and  $\frac{x-2}{3} = \frac{y-1}{0} = \frac{z-1}{2}$ .

OR

4

Find the angle between the line  $\frac{x+1}{2} = \frac{y}{3} = \frac{z-3}{6}$  and the plane 10x + 2y - 11z = 3.

- 30. If  $A = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$ , verify that  $A \cdot adj(A) = |A|I$ .
- 31. A dealer wishes to purchase two types of items, A and B. He has Rs 15,000 to spend. The cost of item A is Rs 300 and item B is Rs 400. He can store at most 40 items. Formulate this as a Linear Programming Problem to maximize his profit if he earns a profit of Rs 50 and Rs 60 on items A and B respectively.

# SECTION D (20 Marks)

This section comprises 4 questions of 5 marks each.

33. Using the method of integration, find the area of the region bounded by the lines 2x + y = 4, 3x - 2y = 6, and x - 3y + 5 = 0.

OR.

Find the area bounded by the curve  $y = 2x - x^2$  and the line y = x.

- 34. If  $A = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2 \end{bmatrix}$  and  $B = \begin{bmatrix} 2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5 \end{bmatrix}$ , find AB. Hence, solve the system of equations x y = 3, 2x + 3y + 4z = 17, y + 2z = 7.
- 35. Prove that the radius of the right circular cylinder of greatest curved surface area which can be inscribed in a given cone is half of the radius of the cone.

OR

Find 
$$\int \frac{\sin x - \cos x}{\sqrt{1 - \sin 2x}} e^x dx$$
.

36. Find the equation of the plane that contains the line of intersection of the planes  $\vec{r} \cdot (\hat{i} + 2\hat{j} + 3\hat{k}) - 4 = 0$  and  $\vec{r} \cdot (2\hat{i} + \hat{j} - \hat{k}) + 5 = 0$ , and which is perpendicular to the plane  $\vec{r} \cdot (5\hat{i} + 3\hat{j} + 6\hat{k}) + 8 = 0$ .

# SECTION E (12 Marks)

This section comprises 3 case study based questions of 4 marks each.

37. Case Study 1: Cost, Revenue, and Profit

A furniture manufacturer produces chairs. The cost of producing x chairs is given by  $C(x) = 400 + 5x + 0.01x^2$  and the price per chair is p(x) = 10 - 0.005x. The Revenue function is  $R(x) = x \cdot p(x)$ , and Profit is P(x) = R(x) - C(x).

Based on the given information, answer the following questions:

- (a) Find the Revenue function R(x). (1 Mark)
- (b) Find the Marginal Profit when x = 20 units are produced. (2 Marks)

OR.

- (c) Find the number of chairs x for which the total profit is maximum. (2 Marks)
- 38. Case Study 2: Binomial Distribution and Quality Check

A machine produces 10% defective bulbs. A quality control officer selects a sample of 5 bulbs for testing. The random variable X denotes the number of defective bulbs in the sample.

Based on the given information, answer the following questions:

- (a) What is the probability that exactly 2 bulbs are defective? (1 Mark)
- (b) Find the probability that at most 1 bulb is defective. (3 Marks)

 $\mathbf{OR}$ 

(c) Find the mean of the number of defective bulbs in the sample. (3 Marks)

### 39. Case Study 3: Ship Navigation and Plane Geometry

A ship is sailing in the sea. Its position is tracked relative to three coastal radar stations A, B, and C. The stations lie on a plane defined by x + 2y - 2z = 5. The ship is currently at point S(3,4,1).

Based on the given information, answer the following questions:

- (a) Find the vector normal to the plane. (1 Mark)
- (b) Calculate the shortest distance of the ship S from the plane defined by the radar stations. (3 Marks)

### $\mathbf{OR}$

(c) Find the equation of the plane parallel to the given plane and passing through the origin. (3 Marks)