PRACTICE QUESTION PAPER - XI CLASS XII - MATHEMATICS (041)

Time Allowed: 3 Hours Maximum Marks: 80

General Instructions:

- 1. This Question Paper contains 38 questions. All questions are compulsory.
- 2. The question paper is divided into FIVE Sections A, B, C, D and E.
- 3. Section A comprises of 20 questions of 1 mark each. (18 MCQs + 2 Assertion-Reasoning)
- 4. Section B comprises of 5 questions of 2 marks each.
- 5. Section C comprises of 6 questions of 3 marks each.
- 6. Section ${\bf D}$ comprises of ${\bf 4}$ questions of ${\bf 5}$ marks each.
- 7. Section ${\bf E}$ comprises of ${\bf 3}$ Case Study Based Questions of ${\bf 4}$ marks each.
- 8. There is no overall choice in the question paper. However, an internal choice has been provided in 2 questions in Section B, 3 questions in Section C, 2 questions in Section D and 2 questions in Section E (in the sub-parts).
- 9. Use of calculators is **not** permitted.

SECTION A (20 Marks)

This section comprises **20** questions of **1** mark each. Questions 1-18 are Multiple Choice Questions (MCQs) and questions 19-20 are Assertion-Reason based questions.

Multiple Choice Questions (MCQs) and Assertion-Reason Questions (Combined Enumeration)

- 1. The minimum number of ordered pairs to form a non-empty equivalence relation on set $A = \{1, 2, 3\}$ is:
 - (a) 3
 - (b) 6
 - (c) 9
 - (d) 1
- 2. If $f: \mathbb{R} \to \mathbb{R}$ is given by f(x) = |x|, then f is:
 - (a) One-one
 - (b) Onto
 - (c) Bijective
 - (d) Many-one
- 3. The value of $\tan^{-1}(1) + \cos^{-1}(-\frac{1}{2}) + \sin^{-1}(-\frac{1}{2})$ is:
 - (a) $\frac{3\pi}{4}$
 - (b) $\frac{\pi}{4}$
 - (c) $\frac{5\pi}{4}$
 - (d) $\frac{\pi}{2}$
- 4. The domain of $f(x) = \cos^{-1}(x^2 4)$ is:
 - (a) [-1,1]
 - (b) $[\sqrt{3}, \sqrt{5}]$
 - (c) $[-\sqrt{5}, -\sqrt{3}] \cup [\sqrt{3}, \sqrt{5}]$

- (d) [-5, -3]
- 5. The matrix $\begin{bmatrix} 0 & a & 3 \\ 2 & b & -1 \\ c & 1 & 0 \end{bmatrix}$ is a skew-symmetric matrix. Then the value of a+b+c is:
 - (a) 0
 - (b) 1
 - (c) 2
 - (d) -1
- 6. If A is a square matrix such that $A^2 = A$, then $(I + A)^3 7A$ is equal to:
 - (a) A
 - (b) *I*
 - (c) I A
 - (d) 2A
- 7. If A is a square matrix of order 3×3 and k|A| = |kA|, then the value of k is:
 - (a) k
 - (b) k^2
 - (c) k^{3}
 - (d) |A|
- 8. The area of a triangle with vertices (0,0), (4,0) and (0,2) is:
 - (a) 8 sq. units
 - (b) 6 sq. units
 - (c) 4 sq. units
 - (d) 2 sq. units
- 9. If $y = \log(\tan x)$, then $\frac{dy}{dx}$ is:
 - (a) $\sec x \csc x$
 - (b) $\tan x \sec x$
 - (c) $\sec^2 x$
 - (d) $\cot x$
- 10. The function $f(x) = x^2 2x + 5$ is strictly increasing in the interval:
 - (a) $(-\infty, 1)$
 - (b) $(1,\infty)$
 - (c) R
 - (d) $(-\infty, \infty)$
- 11. $\int e^{\log(\sin x)} dx$ is equal to:
 - (a) $\cos x + C$
 - (b) $-\cos x + C$
 - (c) $\sin x + C$
 - (d) $e^{\sin x} + C$
- 12. The value of $\int \frac{dx}{x^2-4x+4}$ is:
 - (a) $\log |x 2| + C$

- (b) $\frac{1}{2}\log|x-2| + C$
- (c) $-\frac{1}{x-2} + C$
- (d) $-\frac{1}{(x-2)^2} + C$
- 13. The integrating factor of the differential equation $x\frac{dy}{dx}+2y=x^2$ is:
 - (a) e^x
 - (b) $\log x$
 - (c) x
 - (d) x^2
- 14. If $\vec{a} = 2\hat{i} 5\hat{j} + 2\hat{k}$ and $\vec{b} = \hat{i} + 2\hat{j} + \hat{k}$, then $|\vec{a} + \vec{b}|$ is:
 - (a) $\sqrt{18}$
 - (b) $\sqrt{26}$
 - (c) $\sqrt{34}$
 - (d) $\sqrt{42}$
- 15. The position vector of the midpoint of the vector joining the points P(2,3,4) and Q(4,1,-2) is:
 - (a) $3\hat{i} + 2\hat{j} + \hat{k}$
 - (b) $6\hat{i} + 4\hat{j} + 2\hat{k}$
 - (c) $\hat{i} + \hat{j} + 3\hat{k}$
 - (d) $\hat{i} + 2\hat{j} + 3\hat{k}$
- 16. The projection of the line segment joining the points (1,0,0) and (4,4,12) on the x-axis is:
 - (a) 3
 - (b) 4
 - (c) 12
 - (d) 13
- 17. The vector equation of the plane passing through the point (a, b, c) and parallel to the plane $\vec{r} \cdot (\hat{i} + \hat{j} + \hat{k}) = 2$ is:
 - (a) $\vec{r} \cdot (\hat{i} + \hat{j} + \hat{k}) = 2$
 - (b) $\vec{r} \cdot (\hat{i} + \hat{j} + \hat{k}) = a + b + c$
 - (c) x + y + z = a + b + c
 - (d) x + y + z = 2
- 18. If the constraints of an LPP are $x \ge 0, y \ge 0, x + y \le 6$ and $x \le 4$, then the number of corner points of the feasible region is:
 - (a) 3
 - (b) 4
 - (c) 5
 - (d) 6

Assertion-Reasoning Based Questions

In questions 19 and 20, a statement of Assertion (A) is followed by a statement of Reason (R). Choose the correct answer from the following options:

(a) Both A and R are true and R is the correct explanation of A.

- (b) Both A and R are true but R is not the correct explanation of A.
- (c) A is true but R is false.
- (d) A is false but R is true.
- 19. **Assertion (A):** If A and B are independent events, then A' and B' are also independent. **Reason (R):** $P(A' \cap B') = 1 P(A \cup B)$.
- 20. Assertion (A): $\frac{d}{dx}(\sin^2 x) = 2\sin x \cos x$. Reason (R): $\frac{d}{dx}(f(x)^n) = nf(x)^{n-1}f'(x)$.

SECTION B (10 Marks)

This section comprises 5 questions of 2 marks each.

- 21. Find $\frac{dy}{dx}$ if $y = \cos^{-1}\left(\frac{1}{\sqrt{x}}\right)$.
- 22. Find the value of λ such that the vectors $\vec{a}=2\hat{i}+3\hat{j}+4\hat{k}$ and $\vec{b}=3\hat{i}+2\hat{j}-\lambda\hat{k}$ are perpendicular.

OR

If the position vectors of A and B are \vec{a} and \vec{b} , find the position vector of a point C on BA produced such that BC = 2BA.

23. Evaluate $\int \frac{\cos x}{1+\sin^2 x} dx$.

\mathbf{OR}

If
$$y = \sin^{-1} x$$
, show that $(1 - x^2) \frac{d^2 y}{dx^2} - x \frac{dy}{dx} = 0$.

- 24. Show that $\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}$ for all $x \in [-1, 1]$.
- 25. If P(A) = 0.8 and P(B|A) = 0.5, find $P(A \cap B)$. If A and B are independent, what would P(B|A) be?

SECTION C (18 Marks)

This section comprises 6 questions of 3 marks each.

- 26. Show that the relation R in the set $A = \{x \in \mathbb{Z} : 0 \le x \le 12\}$ given by $R = \{(a,b) : |a-b| \text{ is a multiple of } 4\}$ is an equivalence relation.
- 27. Evaluate $\int e^{2x} \sin x \, dx$.

\mathbf{OR}

Evaluate $\int \frac{x^2+1}{x(x^2-1)} dx$.

28. Find the general solution of the differential equation $\frac{dy}{dx} = y \tan x$.

OR

Find the equation of all lines passing through the origin which are tangent to the circle $x^2 + y^2 - 2x + 4y = 0$.

29. Find the shortest distance between the lines $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ and $\frac{x-1}{-2} = \frac{y-2}{1} = \frac{z-3}{4}$.

OR

Find the perpendicular distance of the point (2,3,4) from the line $\frac{x}{1} = \frac{y-1}{2} = \frac{z-2}{3}$.

- 30. If $A = \begin{bmatrix} 2 & -3 \\ 3 & 4 \end{bmatrix}$, verify that A(adjA) = (adjA)A = |A|I.
- 31. Solve the following Linear Programming Problem graphically: Maximize Z = 5x + 3y subject to $3x + 5y \le 15$, $5x + 2y \le 10$, $x \ge 0$, $y \ge 0$.

4

SECTION D (20 Marks)

This section comprises 4 questions of 5 marks each.

33. Using integration, find the area of the region bounded by $x^2 + y^2 = 16$ and the line y = x in the first quadrant.

OR

Evaluate $\int_0^1 \log\left(\frac{1}{x} - 1\right) dx$.

- 34. Find the product of the matrices $A = \begin{bmatrix} -4 & 4 & 4 \\ -7 & 1 & 3 \\ 5 & -3 & -1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & -1 & 1 \\ 1 & -2 & -2 \\ 2 & 1 & 3 \end{bmatrix}$. Hence solve the system of equations x y + z = 4, x 2y 2z = 9, 2x + y + 3z = 1.
- 35. Show that the surface area of a closed cuboid with square base and given volume is minimum when it is a cube.

OR

Evaluate $\int \frac{x^3 \sin(\tan^{-1} x^4)}{1+x^8} dx$.

36. Find the equation of the plane passing through the points (3,4,1) and (0,1,0) and parallel to the line $\frac{x+3}{3} = \frac{y-3}{2} = \frac{z-2}{5}$.

SECTION E (12 Marks)

This section comprises 3 case study based questions of 4 marks each.

37. Case Study 1: Navigation and Distance

A ship is being guided by two lighthouse towers. The coordinates of the top of the two towers are A(1,2,3) and B(3,5,7). A vector representing the direction from A to B is \vec{AB} .

Based on the given information, answer the following questions:

- (a) Write the vector \vec{AB} . (1 Mark)
- (b) Find the direction cosines of the vector \vec{AB} . (3 Marks)

 \mathbf{OR}

- (c) Find the projection of \vec{AB} on the vector $\vec{c} = \hat{i} + \hat{j} + \hat{k}$. (3 Marks)
- 38. Case Study 2: Quality Control and Binomial Distribution

A batch of 5 items is produced. The probability of an item being defective is 0.1. Let X be the random variable denoting the number of defective items in the batch.

Based on the given information, answer the following questions:

- (a) Find the probability of getting exactly one defective item. (1 Mark)
- (b) Find the probability of getting at least two defective items. (3 Marks)

OR

- (c) Find the mean of the distribution (Expected number of defective items). (3 Marks)
- 39. Case Study 3: Area Under Curve Application

The velocity of a particle moving in a straight line is given by $v(t) = 3t^2 - 4t + 5$ meters per second, for $0 \le t \le 3$. The distance covered by the particle in time T is given by the integral $\int_0^T v(t) dt$.

5

Based on the given information, answer the following questions:

(a) Find the initial velocity of the particle (at t = 0). (1 Mark)

(b) Find the total distance covered by the particle in the first 2 seconds (from t=0 to t=2). (3 Marks)

\mathbf{OR}

(c) Find the distance covered by the particle between t=1 and t=3 seconds. (3 Marks)