PRACTICE QUESTION PAPER - VIII CLASS XII - MATHEMATICS (041)

Time Allowed: 3 Hours Maximum Marks: 80

General Instructions:

- 1. This Question Paper contains 38 questions. All questions are compulsory.
- 2. The question paper is divided into FIVE Sections A, B, C, D and E.
- 3. Section A comprises of 20 questions of 1 mark each. (18 MCQs + 2 Assertion-Reasoning)
- 4. Section B comprises of 5 questions of 2 marks each.
- 5. Section C comprises of 6 questions of 3 marks each.
- 6. Section **D** comprises of **4** questions of **5** marks each.
- 7. Section E comprises of 3 Case Study Based Questions of 4 marks each.
- 8. There is no overall choice in the question paper. However, an internal choice has been provided in 2 questions in Section B, 3 questions in Section C, 2 questions in Section D and 2 questions in Section E (in the sub-parts).
- 9. Use of calculators is **not** permitted.

SECTION A (20 Marks)

This section comprises **20** questions of **1** mark each. Questions 1-18 are Multiple Choice Questions (MCQs) and questions 19-20 are Assertion-Reason based questions.

Multiple Choice Questions (MCQs) and Assertion-Reason Questions (Combined Enumeration)

- 1. Let R be the relation in the set $A = \{1, 2, 3, 4, 5, 6\}$ given by $R = \{(a, b) : b = a + 1\}$. The relation R is:
 - (a) Reflexive
 - (b) Symmetric
 - (c) Transitive
 - (d) None of the above
- 2. The inverse of the function $f: \mathbb{R} \to (-1,1)$ defined by $f(x) = \frac{x}{1+|x|}$ is:
 - (a) $\frac{y}{1+y}$ for $y \in (-1,1)$
 - (b) $\frac{y}{1-|y|}$ for $y \in (-1,1)$
 - (c) $\frac{1+|y|}{y}$ for $y \in (-1,1)$
 - (d) $\frac{1-|y|}{y}$ for $y \in (-1,1)$
- 3. The value of $\cos\left(\sin^{-1}\left(\frac{1}{2}\right) + \cos^{-1}\left(\frac{1}{2}\right)\right)$ is:
 - (a) 0
 - (b) 1
 - (c) $\frac{1}{2}$
 - (d) -1
- 4. If $3 \tan^{-1} x + \cot^{-1} x = \pi$, then x is equal to:
 - (a) 0
 - (b) 1

- (c) -1
- (d) $\frac{1}{2}$
- 5. If $A = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$, then AA^T is equal to:
 - (a) A
 - (b) *I*
 - (c) A^T
 - (d) O (Zero Matrix)
- 6. Given $A = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$. Then A^3 is:
 - (a) $\begin{bmatrix} 3a & 0 \\ 0 & 3b \end{bmatrix}$
 - (b) $\begin{bmatrix} a^3 & 0 \\ 0 & b^3 \end{bmatrix}$
 - (c) $\begin{bmatrix} a^3 & 3 \\ 3 & b^3 \end{bmatrix}$
 - (d) $\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$
- 7. The determinant of a skew-symmetric matrix of odd order is:
 - (a) 1
 - (b) -1
 - (c) 0
 - (d) Always non-zero
- 8. If $\Delta = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$ and A_{ij} are the cofactors of a_{ij} , then the value of Δ is given by:
 - (a) $a_{11}A_{31} + a_{12}A_{32} + a_{13}A_{33}$
 - (b) $a_{11}A_{11} + a_{21}A_{21} + a_{31}A_{31}$
 - (c) $a_{21}A_{11} + a_{22}A_{12} + a_{23}A_{13}$
 - (d) $a_{11}A_{11} + a_{12}A_{21} + a_{13}A_{31}$
- 9. If $f(x) = \begin{cases} x \sin \frac{1}{x}, & x \neq 0 \\ k, & x = 0 \end{cases}$ is continuous at x = 0, then the value of k is:
 - (a) 1
 - (b) -1
 - (c) 0
 - (d) $\frac{1}{2}$
- 10. The total revenue in Rupees received from the sale of x units of a product is given by $R(x) = 3x^2 + 36x + 5$. The marginal revenue when x = 15 is:
 - (a) 116
 - (b) 96
 - (c) 126
 - (d) 36

- 11. $\int \frac{\sin^2 x \cos^2 x}{\sin^2 x \cos^2 x} dx$ is equal to:
 - (a) $\tan x + \cot x + C$
 - (b) $\tan x + \csc x + C$
 - (c) $\tan x + \sec x + C$
 - (d) $\tan x \cot x + C$
- 12. The value of $\int_{-1}^{1} |x| dx$ is:
 - (a) 0
 - (b) 1
 - (c) 2
 - (d) -1
- 13. The degree of the differential equation $\left[1+\left(\frac{dy}{dx}\right)^2\right]^{3/2}=\frac{d^2y}{dx^2}$ is:
 - (a) 1
 - (b) 2
 - (c) 3
 - (d) 4
- 14. If $|\vec{a}|=2, |\vec{b}|=3$ and $\vec{a}\cdot\vec{b}=4$, then $|\vec{a}-\vec{b}|$ is equal to:
 - (a) 1
 - (b) $\sqrt{5}$
 - (c) $\sqrt{13}$
 - (d) 5
- 15. The area of the parallelogram whose adjacent sides are $\hat{i} + \hat{k}$ and $2\hat{i} + \hat{j} + \hat{k}$ is:
 - (a) $\sqrt{3}$ sq. units
 - (b) $\sqrt{5}$ sq. units
 - (c) $\sqrt{6}$ sq. units
 - (d) 3 sq. units
- 16. The angle between the line $\frac{x-5}{7} = \frac{y+2}{-5} = \frac{z}{1}$ and the plane 3x + 4y + z = 1 is:
 - (a) $\sin^{-1}\left(\frac{2}{3\sqrt{3}}\right)$
 - (b) $\cos^{-1}\left(\frac{2}{3\sqrt{3}}\right)$
 - (c) $\sin^{-1}\left(\frac{1}{3\sqrt{3}}\right)$
 - (d) $\cos^{-1}\left(\frac{1}{3\sqrt{3}}\right)$
- 17. The distance of the point (2,3,4) from the plane 3x + 2y + 6z + 1 = 0 is:
 - (a) 35
 - (b) 5
 - (c) $\frac{35}{7}$
 - (d) 7
- 18. The feasible region for an LPP is shown in the figure. The maximum value of Z=x+3y occurs at:

- (a) (0,0)
- (b) (0,2)
- (c) (3,1)
- (d) (1,3)

(Assume corner points are (0,0),(0,2),(3,1),(1,3) for calculation.)

Assertion-Reasoning Based Questions

In questions 19 and 20, a statement of Assertion (A) is followed by a statement of Reason (R). Choose the correct answer from the following options:

- (a) Both A and R are true and R is the correct explanation of A.
- (b) Both A and R are true but R is not the correct explanation of A.
- (c) A is true but R is false.
- (d) A is false but R is true.
- 19. **Assertion (A):** If A and B are two events such that P(A) = 0.4 and P(B|A) = 0.5, then $P(A \cap B) = 0.2$. **Reason (R):** $P(B|A) = \frac{P(A \cap B)}{P(B)}$.
- 20. Assertion (A): The function $f(x) = \tan x$ has no local maxima or minima in $(0, \pi)$. Reason (R): The derivative $f'(x) = \sec^2 x$ is strictly positive for all $x \in (0, \pi)$.

SECTION B (10 Marks)

This section comprises 5 questions of 2 marks each.

- 21. Find $\frac{dy}{dx}$ if $y = (\log x)^{\cos x}$.
- 22. Find the angle between the vectors $\vec{a} = 3\hat{i} + 4\hat{j} 5\hat{k}$ and $\vec{b} = 2\hat{i} + \hat{j} + 2\hat{k}$.

OR

Find the projection of $\vec{a}=2\hat{i}-\hat{j}+\hat{k}$ on $\vec{a}+\vec{b},$ where $\vec{b}=\hat{i}+2\hat{j}+0\hat{k}.$

23. Evaluate $\int \frac{1}{x^2 - 6x + 13} dx$.

OR

Find the value of k so that the function $f(x) = \begin{cases} \frac{1-\cos 4x}{8x^2}, & x \neq 0 \\ k, & x = 0 \end{cases}$ is continuous at x = 0.

- 24. If $\begin{vmatrix} 2x & 5 \\ 8 & x \end{vmatrix} = \begin{vmatrix} 6 & -2 \\ 7 & 3 \end{vmatrix}$, write the value of x.
- 25. If P(A) = 0.3, P(B) = 0.6 and A and B are independent events, find $P(A \cup B)$.

SECTION C (18 Marks)

This section comprises 6 questions of 3 marks each.

- 26. Show that the function $f: \mathbb{R} \to \mathbb{R}$ defined by f(x) = 4x + 3 is invertible and find f^{-1} .
- 27. Find the general solution of the differential equation $\frac{dy}{dx} = 1 + x + y + xy$.

 \mathbf{OR}

Evaluate $\int \frac{x \sin^{-1} x}{\sqrt{1-x^2}} dx$.

28. Prove that $y = Ae^{-3x} + Be^{2x}$ is the general solution of the differential equation $\frac{d^2y}{dx^2} + \frac{dy}{dx} - 6y = 0$.

4

Find the equation of the tangent line to the curve $y = \sqrt{4x - 3} - 1$ which is parallel to the line 2x - y + 3 = 0.

29. Find the equation of the plane passing through the point (1,0,-2) and perpendicular to each of the planes 2x + y - z = 2 and x - y - z = 3.

Find the vector equation of the line passing through the points A(3, -2, -5) and B(3, -2, 6).

- 30. Express the matrix $A = \begin{bmatrix} 3 & -2 & -4 \\ 3 & -2 & -5 \\ -1 & 1 & 2 \end{bmatrix}$ as the sum of a symmetric and a skew-symmetric matrix.
- 31. A manufacturing company makes two models A and B of a product. Each piece of model A requires 9 labour hours for fabricating and 1 labour hour for finishing. Each piece of model B requires 12 labour hours for fabricating and 3 labour hours for finishing. For fabricating and finishing, the maximum labour hours available are 180 and 30 respectively. The company makes a profit of Rs 8000 on each piece of model A and Rs 12000 on each piece of model B. Formulate the LPP.

SECTION D (20 Marks)

This section comprises 4 questions of 5 marks each.

33. Using integration, find the area of the region bounded by the triangle whose vertices are (-1,1), (0,5) and (3,2).

 \mathbf{OR}

Evaluate $\int \frac{\sin x + \cos x}{9 + 16 \sin 2x} dx$.

- 34. Find the matrix X such that $X \begin{bmatrix} 5 & 3 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 14 & 7 \\ 7 & 7 \end{bmatrix}$.
- 35. Find the maximum and minimum values of $f(x) = \sin x + \cos x$ in the interval $[0, \pi]$.

OR

Evaluate $\int \frac{1}{\cos(x-a)\cos(x-b)} dx$.

36. Find the shortest distance between the lines $\vec{r} = (6\hat{i} + 2\hat{j} + 2\hat{k}) + \lambda(\hat{i} - 2\hat{j} + 2\hat{k})$ and $\vec{r} = (-4\hat{i} - \hat{k}) + \mu(3\hat{i} - 2\hat{j} - 2\hat{k})$.

SECTION E (12 Marks)

This section comprises 3 case study based questions of 4 marks each.

37. Case Study 1: Ladder Problem and Rate of Change

A ladder 5 m long is leaning against a wall. The bottom of the ladder is pulled along the ground, away from the wall, at the rate of 2 cm/s. Let x be the distance of the base of the ladder from the wall and y be the height of the top of the ladder on the wall.

Based on the given information, answer the following questions:

- (a) Write the relation between x and y using the Pythagorean theorem. (1 Mark)
- (b) Find the rate at which the height of the ladder on the wall is decreasing when the base is 4 m away from the wall. (3 Marks)

 \mathbf{OR}

(c) Find the rate at which the area of the triangle formed by the ladder, the wall, and the ground is changing when the base is 3 m away from the wall. (3 Marks)

5

38. Case Study 2: Probability Distribution and Expectation

A random variable X has the following probability distribution:

X	0	1	2	3
P(X)	c	2c	2c	c

Based on the given information, answer the following questions:

- (a) Find the value of the constant c. (1 Mark)
- (b) Find the mean (Expected value E(X)) of the random variable X. (3 Marks)

 \mathbf{OR}

(c) Find the probability P(0 < X < 3). (3 Marks)

39. Case Study 3: Plane Geometry and Intersection

A large room is designed such that the floor, walls, and ceiling form planes. Consider two adjacent walls, represented by the planes:

$$P_1: x + 2y - z = 5$$

$$P_2: 2x - y + 3z = 4$$

Based on the given information, answer the following questions:

- (a) Find the vector normal to the plane P_1 . (1 Mark)
- (b) Find the Cartesian equation of the plane passing through the intersection of P_1 and P_2 and through the point (0,0,0). (3 Marks)

OR

(c) Find the angle between the two planes P_1 and P_2 . (3 Marks)