PRACTICE QUESTION PAPER - XX CLASS XII - MATHEMATICS (041)

Time Allowed: 3 Hours Maximum Marks: 80

General Instructions:

- 1. This Question Paper contains 38 questions. All questions are compulsory.
- 2. The question paper is divided into FIVE Sections A, B, C, D and E.
- 3. Section A comprises of 20 questions of 1 mark each. (18 MCQs + 2 Assertion-Reasoning)
- 4. Section B comprises of 5 questions of 2 marks each.
- 5. Section C comprises of 6 questions of 3 marks each.
- 6. Section **D** comprises of **4** questions of **5** marks each.
- 7. Section ${\bf E}$ comprises of ${\bf 3}$ Case Study Based Questions of ${\bf 4}$ marks each.
- 8. There is no overall choice in the question paper. However, an internal choice has been provided in 2 questions in Section B, 3 questions in Section C, 2 questions in Section D and 2 questions in Section E (in the sub-parts).
- 9. Use of calculators is **not** permitted.

SECTION A (20 Marks)

This section comprises 20 questions of 1 mark each. Questions 1-18 are Multiple Choice Questions (MCQs) and questions 19-20 are Assertion-Reason based questions.

Multiple Choice Questions (MCQs) and Assertion-Reason Questions (Combined Enumeration)

- 1. Let R be a relation on the set L of all lines in a plane defined by $(L_1, L_2) \in R$ if L_1 is parallel to L_2 . R is:
 - (a) Reflexive only
 - (b) Symmetric only
 - (c) Transitive only
 - (d) An Equivalence relation
- 2. If $f: \mathbb{R} \to \mathbb{R}$ is defined by f(x) = x|x|, then f is:
 - (a) One-one but not onto
 - (b) Onto but not one-one
 - (c) Both one-one and onto
 - (d) Neither one-one nor onto
- 3. The value of $\cos(\sec^{-1} x + \csc^{-1} x)$, where $|x| \ge 1$, is:
 - (a) 1
 - (b) -1
 - (c) $\pi/2$
 - (d) 0
- 4. The domain of the function $f(x) = \sin^{-1} x + \cos x$ is:
 - (a) [-1,1]
 - (b) $(-\infty, \infty)$
 - (c) $[-1,1] \cup \mathbb{R}$

- (d) (-1,1)
- 5. If A is a matrix of order $m \times n$ and B is a matrix such that AB^T and B^TA are both defined, then the order of B is:
 - (a) $m \times n$
 - (b) $n \times m$
 - (c) $m \times m$
 - (d) $n \times n$
- 6. If the matrix $A=\begin{bmatrix}0&a&-3\\2&0&-1\\b&1&0\end{bmatrix}$ is a skew-symmetric matrix, then a+b is equal to:
 - (a) 1
 - (b) -1
 - (c) 5
 - (d) -5
- 7. If A is a square matrix of order 3 such that A(adj A) = 10I, then |A| is:
 - (a) 10
 - (b) 100
 - (c) 1000
 - (d) 1
- 8. The value of the determinant $\begin{vmatrix} 1 & 1 & 1 \\ 1 & 1+x & 1 \\ 1 & 1 & 1+y \end{vmatrix}$ is:
 - (a) xy
 - (b) x + y
 - (c) 1
 - (d) 0
- 9. The derivative of $\tan^{-1}\left(\frac{3x-x^3}{1-3x^2}\right)$ with respect to x is:
 - (a) $\frac{3}{1+x^2}$
 - (b) $\frac{3}{1-x^2}$
 - (c) $\frac{1}{1+x^2}$
 - (d) $\frac{1}{1-x^2}$
- 10. The maximum value of the function $f(x) = 3\cos x + 4\sin x + 8$ is:
 - (a) 5
 - (b) 12
 - (c) 13
 - (d) 10
- 11. $\int \frac{1}{\sqrt{x^2+2x+2}} dx$ is equal to:
 - (a) $\log |x + 1 + \sqrt{x^2 + 2x + 2}| + C$
 - (b) $\sin^{-1}(x+1) + C$
 - (c) $\log |x + \sqrt{x^2 + 2x + 2}| + C$

- (d) $\sqrt{x^2 + 2x + 2} + C$
- 12. The value of $\int_0^2 |x-1| dx$ is:
 - (a) 1
 - (b) 0
 - (c) 2
 - (d) 1/2
- 13. The integrating factor (IF) of the differential equation $x \frac{dy}{dx} y = x^2$ is:
 - (a) x
 - (b) 1/x
 - (c) e^x
 - (d) $\log x$
- 14. If $\vec{a} = 2\hat{i} + 2\hat{j} + 3\hat{k}$, $\vec{b} = -\hat{i} + 2\hat{j} + \hat{k}$ and $\vec{c} = 3\hat{i} + \hat{j}$ are such that $\vec{a} + \lambda \vec{b}$ is perpendicular to \vec{c} , then the value of λ is:
 - (a) 8
 - (b) 6
 - (c) -8
 - (d) 4
- 15. The scalar triple product $[\hat{i}-2\hat{j}+3\hat{k},-2\hat{i}+3\hat{j}-4\hat{k},\hat{i}-3\hat{j}+5\hat{k}]$ is:
 - (a) 1
 - (b) -1
 - (c) 0
 - (d) 2
- 16. The vector equation of the plane 2x + 3y z = 5 is:
 - (a) $\vec{r} \cdot (2\hat{i} + 3\hat{j} \hat{k}) = 5$
 - (b) $\vec{r} \cdot (2\hat{i} + 3\hat{j} \hat{k}) = 1$
 - (c) $x\hat{i} + y\hat{j} + z\hat{k} = 5$
 - (d) $\vec{r} = 5(2\hat{i} + 3\hat{j} \hat{k})$
- 17. The ratio in which the xy-plane divides the line segment joining the points A(2,4,5) and B(3,5,-4) is:
 - (a) 4:5 internally
 - (b) 5:4 internally
 - (c) 4:5 externally
 - (d) 5:4 externally
- 18. Any point in the feasible region of an LPP is called a/an:
 - (a) Optimal solution
 - (b) Corner point
 - (c) Feasible solution
 - (d) Infeasible solution

Assertion-Reasoning Based Questions

In questions 19 and 20, a statement of Assertion (A) is followed by a statement of Reason (R). Choose the correct answer from the following options:

- (a) Both A and R are true and R is the correct explanation of A.
- (b) Both A and R are true but R is not the correct explanation of A.
- (c) A is true but R is false.
- (d) A is false but R is true.
- 19. Assertion (A): If A and B are independent events, then P(A and B) = P(A)P(B). Reason (R): The multiplication theorem of probability states $P(A \cap B) = P(A)P(B|A)$, and if A and B are independent, P(B|A) = P(B).
- 20. Assertion (A): The function $f(x) = \log x$ has neither a maximum nor a minimum value on $(0,\infty)$. Reason (R): f'(x) = 1/x, which is always positive for $x \in (0,\infty)$, so the function is always increasing.

SECTION B (10 Marks)

This section comprises 5 questions of 2 marks each.

- 21. If $y = (\sin x)^{\sin x}$, find $\frac{dy}{dx}$.
- 22. Find the angle between the vectors $\vec{a}=3\hat{i}+4\hat{j}+5\hat{k}$ and $\vec{b}=3\hat{i}+4\hat{j}-5\hat{k}$.

OR

Find the direction cosines of the vector $\vec{a} = \hat{i} + 2\hat{j} + 3\hat{k}$ and hence show that the sum of the squares of the direction cosines is unity.

23. Evaluate $\int \frac{x^2 \tan^{-1} x}{1+x^2} dx$.

OR.

Find the interval in which the function $f(x) = \sin x + \cos x$, $0 < x < 2\pi$ is strictly increasing.

- 24. Express the matrix $A = \begin{bmatrix} 3 & 5 \\ 1 & -1 \end{bmatrix}$ as the sum of a symmetric and a skew-symmetric matrix.
- 25. Given P(A) = 0.6, P(B) = 0.3 and $P(A \cap B) = 0.18$. Find P(A|B). Are A and B independent?

SECTION C (18 Marks)

This section comprises 6 questions of 3 marks each.

- 26. Simplify $\tan^{-1}\left(\frac{a\cos x b\sin x}{b\cos x + a\sin x}\right)$, if $\frac{a}{b}\tan x > -1$.
- 27. Evaluate $\int \frac{\cos x}{\sqrt{4-\sin^2 x}} dx$.

OR

Evaluate $\int \frac{\sin x \cos x}{\sin^4 x + \cos^4 x} dx$.

28. Find the general solution of the differential equation $(x^2 + xy)dy = (x^2 + y^2)dx$.

OR

Find the coordinates of the point on the curve $y = x^2 + 7x + 3$ at which the tangent is parallel to the x-axis.

29. Find the coordinates of the point where the line joining A(5,1,6) and B(3,4,1) crosses the yz-plane.

OR

If the vertices A, B, C of a triangle are (1, 2, 3), (-1, 0, 0) and (0, 1, 2), find $\angle ABC$.

30. If
$$A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$$
, show that $A^2 - 5A + 7I = O$.

31. Solve the following LPP graphically: Minimize Z = 3x + 5y subject to $x + 3y \ge 3, x + y \ge 2, x, y \ge 0$.

SECTION D (20 Marks)

This section comprises 4 questions of 5 marks each.

32. Using integration, find the area of the region bounded by the curves $x^2 = 4y$ and 4y = 8 - x.

OR

Evaluate $\int_0^1 \frac{\log x}{\sqrt{1-x^2}} dx$. (Assume the result $\int_0^1 \frac{\log x}{\sqrt{1-x^2}} dx = -\frac{\pi}{2} \log 2$ for the purpose of the exam and focus on the steps of integration if this identity is used in a specific way).

- 33. Given $A = \begin{bmatrix} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end{bmatrix}$, find A^{-1} . Use A^{-1} to solve the system of equations 2x 3y + 5z = 11, 3x + 2y 4z = -5, x + y 2z = -3.
- 34. Find the dimensions of the rectangle of maximum area that can be inscribed in a circle of radius r.

OR

Evaluate
$$\int \frac{x^2}{x^4+1} dx$$
.

35. Find the equation of the plane which contains the line of intersection of the planes x+2y+3z-4=0 and 2x+y-z+5=0 and whose perpendicular distance from the origin is $\frac{1}{\sqrt{6}}$.

SECTION E (12 Marks)

This section comprises 3 case study based questions of 4 marks each.

36. Case Study 1: Velocity and Displacement

The velocity of a particle moving along a straight line is given by $v(t) = t^2 - 4t + 3$, where t is the time in seconds.

Based on the given information, answer the following questions:

- (a) Find the time intervals when the particle is moving in the positive direction. (1 Mark)
- (b) Find the displacement of the particle in the first 3 seconds (from t = 0 to t = 3). (3 Marks)

OR

(c) Find the total distance travelled by the particle in the first 3 seconds. (3 Marks)

37. Case Study 2: Committee Selection

A committee of 4 students is to be randomly selected from 5 boys and 3 girls. Let X be the random variable representing the number of girls in the committee.

Based on the given information, answer the following questions:

- (a) State the number of ways to select a committee of 4 students from the 8 students. (1 Mark)
- (b) Find the probability distribution of X. (3 Marks)

OR

(c) Find the probability that the committee has exactly 2 girls. (3 Marks)

38. Case Study 3: Intersecting Flights

The path of two aircrafts F_1 and F_2 are modelled by the lines:

$$F_1: \vec{r} = 3\hat{i} + 2\hat{j} - 4\hat{k} + \lambda(\hat{i} + 2\hat{j} + 2\hat{k})$$

$$F_2: \vec{r} = 5\hat{i} - 2\hat{j} + \mu(3\hat{i} + 2\hat{j} + 6\hat{k})$$

A radar station is located at R(1,0,2).

Based on the given information, answer the following questions:

- (a) Write the vector representing the direction of F_1 . (1 Mark)
- (b) Find the point where F_2 intersects the xz-plane (y=0). (3 Marks)

 \mathbf{OR}

(c) Find the distance of the radar station R from the line F_1 . (3 Marks)