ISC CLASS XII MATHEMATICS (TEST PAPER 8) - SET 08

Time Allowed: 3 hours Maximum Marks: 80

General Instructions:

- 1. Candidates are required to attempt all questions from **Section A** and **EITHER Section B OR Section C**.
- 2. All working, including rough work, must be clearly shown. Omission of essential working will result in loss of marks.
- 3. The maximum mark for any single question is 6.
- 4. The intended marks for questions or parts of questions are given in brackets [].

SECTION A (Compulsory - 65 Marks)

All questions in this section are compulsory. (R&F: 10, Algebra: 10, Calculus: 32, Probability: 13)

Question 1 (10 \times 1 Mark = 10 Marks)

Answer the following questions.

- 1. Let * be an operation on \mathbb{Z} defined by a*b=a+b+ab. Find the inverse of the element 2. [1]
- 2. Evaluate: $\sin\left(\cos^{-1}\left(\frac{3}{5}\right)\right)$. [1]
- 3. Determine if the function $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^3 3x$ is one-one. [1]
- 4. Find $f^{-1}(x)$ if $f(x) = \frac{e^x e^{-x}}{2}$. [1]
- 5. Find $\frac{dy}{dx}$ if $y = x^x$. [1]
- 6. Write the integrating factor (I.F.) of the differential equation: $\frac{dy}{dx} \frac{y}{x} = x \cos x$. [1]
- 7. State the value of k that makes $f(x) = \frac{\sin x}{x}$ continuous at x = 0. [1]
- 8. Write the value of the integral $\int_1^3 (2x+5)dx$ as the limit of a sum. (Write the expression only). [1]
- 9. If P(A) = 0.5, P(B) = 0.6, and $P(A \cap B) = 0.2$. Find $P(A \cup B)$. [1]
- 10. The total probability of a distribution is $\sum P(X) = k$. What is the value of k? [1]

Question 2 (3 \times 2 Marks = 6 Marks)

Answer the following questions.

- 1. Differentiate $y = \left(\frac{x}{\sin x}\right)^x$ with respect to x. [2]
- 2. Find the slope of the tangent to the curve $y = \frac{x-1}{x-2}$ at x = 10. [2]
- 3. Let A and B be two events such that P(A) = 0.4, P(B) = 0.7, and P(B|A) = 0.5. Find $P(A \cup B)$. [2]

Question 3 $(4 \times 4 \text{ Marks} = 16 \text{ Marks})$

Answer the following questions.

- 1. Verify Lagrange's Mean Value Theorem for the function $f(x) = x^3 6x + 5$ in the interval [1, 3]. [4]
- 2. Solve the differential equation: $\frac{dy}{dx} = \frac{y}{x} + \tan\left(\frac{y}{x}\right)$, given $y(1) = \frac{\pi}{4}$. [4]
- 3. Evaluate: $\int \frac{3x-1}{(x^2+1)(x+1)} dx$. [4]
- 4. Find the value of x for which the matrix $A = \begin{pmatrix} 1 & -2 & 3 \\ 1 & 2 & 1 \\ x & 2 & -3 \end{pmatrix}$ is singular. [4]

Question 4 (3 \times 6 Marks = 18 Marks)

Answer the following questions.

- 1. A wire of length 20 m is to be cut into two pieces. One piece is to be made into a square and the other into an equilateral triangle. How should the wire be cut so that the sum of the areas of the square and the triangle is minimum? [6]
- 2. Evaluate: $\int \sin(\log x) dx$. [6]
- 3. Solve the system of linear equations using the matrix inverse method: [6]

$$x + y + z = 3$$
$$x - 2y + 3z = 2$$

$$2x - y + z = 6$$

Question 5 (15 Marks)

Answer the following questions.

1. (a) Prove that: $\sin^{-1}\left(\frac{3}{5}\right) + \sin^{-1}\left(\frac{8}{17}\right) = \sin^{-1}\left(\frac{77}{85}\right)$. [6] (b) A coin is tossed 6 times. Find the probability of getting at least 5 successes. [6] (c) An urn contains 3 red and 5 black balls. A second urn contains 6 red and 4 black balls. A ball is drawn from the first urn and put into the second urn, and then a ball is drawn from the second urn. Find the probability that the second ball is red. [3]

2

SECTION B (Optional - 15 Marks)

Answer all questions from this section. (Unit V: Vectors - 5 Marks; Unit VI: 3D Geometry - 6 Marks; Unit VII: Applications of Integrals - 4 Marks)

Question 6 (5 Marks)

Answer the following questions.

- 1. If $\vec{a} = 3\hat{i} + 2\hat{j} + 2\hat{k}$ and $\vec{b} = \hat{i} + 2\hat{j} 2\hat{k}$, find the magnitude of the projection of \vec{b} on \vec{a} . [2]
- 2. Find the magnitude of $\vec{a} \times \vec{b}$, if $\vec{a} = 2\hat{i} + \hat{j} + 3\hat{k}$ and $\vec{b} = 3\hat{i} + 5\hat{j} 2\hat{k}$. [3]

Question 7 (10 Marks)

Answer the following questions.

- 1. Find the angle between the line $\vec{r} = (\hat{i} + \hat{j}) + \lambda(2\hat{i} 2\hat{j} + \hat{k})$ and the plane $\vec{r} \cdot (6\hat{i} 3\hat{j} + 2\hat{k}) = 5$. [6]
- 2. Using integration, find the area bounded by the parabolas $y = x^2$ and $x = y^2$. [4]

SECTION C (Optional - 15 Marks)

Answer all questions from this section. (Unit VIII: Application of Calculus - 5 Marks; Unit IX: Linear Regression - 6 Marks; Unit X: Linear Programming - 4 Marks)

Question 8 (5 Marks)

Answer the following question.

1. The marginal revenue function for a firm is $MR = 50 - 6x - 2x^2$. Find the total revenue function R(x) and the demand function p(x). [5]

Question 9 (10 Marks)

Answer the following questions.

1. Solve the following Linear Programming Problem graphically: Maximize Z=3x+2y Subject to the constraints:

$$x + 2y \le 10$$
$$3x + y \le 15$$
$$x, y \ge 0$$

[4]

2. The following regression equations are given: 4x - 5y + 33 = 0 and 20x - 9y - 107 = 0. Find the mean of x and y and the coefficient of correlation r. [6]