ISC CLASS XII MATHEMATICS (TEST PAPER 20) - SET 20

Time Allowed: 3 hours Maximum Marks: 80

General Instructions:

- 1. Candidates are required to attempt all questions from **Section A** and **EITHER Section B OR Section C**.
- 2. All working, including rough work, must be clearly shown. Omission of essential working will result in loss of marks.
- 3. The maximum mark for any single question is 6.
- 4. The intended marks for questions or parts of questions are given in brackets [].

SECTION A (Compulsory - 65 Marks)

All questions in this section are compulsory. (R&F: 10, Algebra: 10, Calculus: 32, Probability: 13)

Question 1 (10 \times 1 Mark = 10 Marks)

Answer the following questions.

- 1. Let * be a binary operation on \mathbb{Z} defined by a*b=a+b-1. Find the inverse of the element 5. [1]
- 2. Evaluate: $\tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{1}{3}\right)$. [1]
- 3. Show that the function $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2$ is not a bijection. [1]
- 4. If A is a square matrix such that $A^T = A$, what is A called? [1]
- 5. Find $\frac{dy}{dx}$ if $e^x + e^y = e^{x+y}$. [1]
- 6. Write the value of $\int_0^a f(x)dx + \int_0^a f(a-x)dx$. [1]
- 7. Write the order and degree of the differential equation $\frac{d^2y}{dx^2} + \sin\left(\frac{dy}{dx}\right) = 0$. [1]
- 8. Find $\lim_{x\to 2} \frac{x^4-16}{x-2}$. [1]
- 9. If X is a random variable, write the formula for Var(X) using E(X) and $E(X^2)$. [1]
- 10. Let R be a relation on \mathbb{N} defined by xRy if x divides y. Is R a transitive relation? Justify. [1]

Question 2 (3 \times 2 Marks = 6 Marks)

Answer the following questions.

- 1. If $y = \cos(2x)$, find $\frac{d^2y}{dx^2}$. [2]
- 2. Use differentials to approximate the value of $\sqrt[3]{126}$. [2]
- 3. From 7 teachers and 4 students, a committee of 5 is to be formed. Find the probability that the committee will have exactly 3 teachers. [2]

Question 3 $(4 \times 4 \text{ Marks} = 16 \text{ Marks})$

Answer the following questions.

- 1. Find the intervals in which the function $f(x) = x^3 6x^2 + 5$ is strictly increasing or strictly decreasing. [4]
- 2. Find the particular solution of the differential equation: $\frac{dy}{dx} + y \sec x = \tan x$, given y(0) = 1. [4]
- 3. Evaluate: $\int \frac{dx}{5+4\cos x}$. [4]
- 4. Show that b+c, c+a, a+b is a factor of the determinant $\begin{vmatrix} 0 & a & b \\ -a & 0 & c \\ -b & -c & 0 \end{vmatrix}$. [4]

Question 4 (3 \times 6 Marks = 18 Marks)

Answer the following questions.

- 1. Show that the volume of the greatest cone that can be inscribed in a sphere of radius R is $\frac{8}{27}$ of the volume of the sphere. [6]
- 2. Evaluate: $\int e^{2x} \left(\frac{1-\sin 2x}{1-\cos 2x} \right) dx$. [6]
- 3. Solve the system of linear equations using the matrix method: [6]

$$x + y + z = 3$$
$$x - 2y + z = 1$$
$$3x + y - 2z = 4$$

Question 5 (15 Marks)

Answer the following questions.

1. (a) Show that the function $f: \mathbb{R} - \{\frac{3}{2}\} \to \mathbb{R} - \{\frac{1}{2}\}$ defined by $f(x) = \frac{x-2}{2x-3}$ is invertible. Find $f^{-1}(x)$. [6] (b) A coin is biased so that the head is 3 times as likely to occur as tails. If the coin is tossed 4 times, find the probability of getting at least 3 heads. [6] (c) Find the general solution of the differential equation: $\frac{dy}{dx} = \frac{x^2 - y^2}{2xy}$. [3]

2

SECTION B (Optional - 15 Marks)

Answer all questions from this section. (Unit V: Vectors - 5 Marks; Unit VI: 3D Geometry - 6 Marks; Unit VII: Applications of Integrals - 4 Marks)

Question 6 (5 Marks)

Answer the following questions.

- 1. Find the scalar component of the projection of the vector $3\hat{i} \hat{j} + 4\hat{k}$ on the vector $2\hat{i} + 4\hat{j} 4\hat{k}$. [2]
- 2. Find the value of λ for which the vectors $\hat{i} 3\hat{j} + \hat{k}$, $2\hat{i} \hat{j} + 2\hat{k}$ and $\lambda \hat{i} + \hat{j} \hat{k}$ are coplanar. [3]

Question 7 (10 Marks)

Answer the following questions.

- 1. Find the equation of the plane that passes through the three points (1,1,0), (1,2,1), and (-2,2,-1). [6]
- 2. Using integration, find the area of the region in the first quadrant bounded by the circle $x^2 + y^2 = 9$. [4]

SECTION C (Optional - 15 Marks)

Answer all questions from this section. (Unit VIII: Application of Calculus - 5 Marks; Unit IX: Linear Regression - 6 Marks; Unit X: Linear Programming - 4 Marks)

Question 8 (5 Marks)

Answer the following question.

1. The total cost function is given by C(x) = 2x + 100. Find the marginal cost (MC) and the average cost (AC) functions. Comment on the nature of AC. [5]

Question 9 (10 Marks)

Answer the following questions.

1. Solve the following Linear Programming Problem graphically: Maximize Z=3x+2y Subject to the constraints:

$$x + 2y \le 10$$
$$3x + y \le 15$$
$$x \ge 0$$
$$y \ge 0$$

[4]

2. The two lines of regression are 2x - 9y + 6 = 0 and x - 2y + 1 = 0. Find the means of x and y. If the standard deviation of x is 3, find the coefficient of correlation r. [6]