ISC CLASS XII MATHEMATICS (TEST PAPER 4) - SET 04

Time Allowed: 3 hours Maximum Marks: 80

General Instructions:

- 1. Candidates are required to attempt all questions from **Section A** and **EITHER Section B OR Section C**.
- 2. All working, including rough work, must be clearly shown. Omission of essential working will result in loss of marks.
- 3. The maximum mark for any single question is 6.
- 4. The intended marks for questions or parts of questions are given in brackets [].

SECTION A (Compulsory - 65 Marks)

All questions in this section are compulsory. (R&F: 10, Algebra: 10, Calculus: 32, Probability: 13)

Question 1 (10 \times 1 Mark = 10 Marks)

Answer the following questions.

- 1. Let * be a binary operation on \mathbb{Q} defined by a*b=a+b-ab. Find the identity element for *. [1]
- 2. Simplify: $\tan^{-1}\left(\frac{a\cos x b\sin x}{b\cos x + a\sin x}\right)$, where $\frac{a}{b}\tan x > -1$. [1]
- 3. Determine if the function $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = \sin(\pi x)$ is one-one. [1]
- 4. Find the point of discontinuity for the function $f(x) = \frac{x^2 4x + 3}{x^2 1}$. [1]
- 5. Find $\frac{dy}{dx}$ if $y = \tan^{-1}(x\sqrt{1-x^2})$. [1]
- 6. Evaluate: $\int \frac{1}{\sqrt{x^2-8x+15}} dx$. [1]
- 7. Write the integrating factor (I.F.) of the differential equation $\frac{dy}{dx} 3y = \sin x$. [1]
- 8. If A and B are independent events with P(A) = 0.3 and P(B) = 0.5, find $P(A \cap B')$. [1]
- 9. A discrete random variable X has mean E(X) = 4. Find the mean of Y = 3X + 5. [1]
- 10. If $A = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$, find $|A^3|$. [1]

Question 2 $(3 \times 2 \text{ Marks} = 6 \text{ Marks})$

Answer the following questions.

- 1. Verify Rolle's Theorem for the function $f(x) = e^x \sin x$ on the interval $[0, \pi]$. [2]
- 2. Differentiate $y = (\log x)^x + x^{\log x}$ with respect to x. [2]
- 3. The probability of solving a problem by A and B are $\frac{1}{2}$ and $\frac{1}{3}$ respectively. Find the probability that the problem is solved. [2]

Question 3 $(4 \times 4 \text{ Marks} = 16 \text{ Marks})$

Answer the following questions.

- 1. Find the equation of the tangent line to the curve $y = x^2 2x + 7$ which is parallel to the line 2x y + 9 = 0. [4]
- 2. A cube's edge is increasing at the rate of 3 cm/s. How fast is its volume increasing when the length of the edge is 10 cm? [4]
- 3. Evaluate: $\int_{\pi/6}^{\pi/3} \frac{\sin x}{\sin x + \cos x} dx.$ [4]
- 4. Find the values of x and y such that the matrix $A = \begin{pmatrix} 0 & 2y & -3 \\ 2 & 0 & -1 \\ 3 & 1 & 0 \end{pmatrix}$ is skew-symmetric. [4]

Question 4 (3 \times 6 Marks = 18 Marks)

Answer the following questions.

- 1. Show that the area of the largest rectangle that can be inscribed in the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is 2ab. [6]
- 2. Evaluate: $\int e^{2x} \sin(3x) dx$. [6]
- 3. Solve the linear differential equation: $(1+y^2)dx + (x-e^{\tan^{-1}y})dy = 0$. [6]

Question 5 (15 Marks)

Answer the following questions.

1. (a) If $f: \mathbb{R} \to \mathbb{R}$ is defined by $f(x) = x^2 + 4$. Show that f is not invertible. If the domain is restricted to $[0, \infty)$, show f is invertible and find its inverse. [6] (b) Solve the system of linear equations using the matrix method: [6]

$$2x - 3y + 5z = 11$$

$$3x + 2y - 4z = -5$$

$$x + y - 2z = -3$$

(c) A factory has three machines A, B, and C. Machine A produces 50% of the total output, B produces 30%, and C produces 20%. The defective percentage from A, B, and C are 2%, 3%, and 5% respectively. If an item is drawn at random and is found to be defective, find the probability that it was produced by Machine A. [3]

2

SECTION B (Optional - 15 Marks)

Answer all questions from this section. (Unit V: Vectors - 5 Marks; Unit VI: 3D Geometry - 6 Marks; Unit VII: Applications of Integrals - 4 Marks)

Question 6 (5 Marks)

 $Answer\ the\ following\ questions.$

- 1. Find the area of the parallelogram whose adjacent sides are the vectors $\vec{a} = 3\hat{i} + \hat{j} + 4\hat{k}$ and $\vec{b} = \hat{i} \hat{j} + \hat{k}$. [2]
- 2. If the vectors $\vec{a} = \hat{i} + 3\hat{j} 2\hat{k}$, $\vec{b} = \hat{i} 2\hat{j} + 4\hat{k}$, and $\vec{c} = 3\hat{i} \hat{j} + 2\hat{k}$ form the sides of a triangle, find the length of the altitude from vertex A to the side represented by \vec{b} . [3]

Question 7 (10 Marks)

Answer the following questions.

- 1. Find the equation of the plane passing through the point (-1,3,2) and perpendicular to the two planes x + 2y + 3z = 5 and 3x + 3y + z = 0. [6]
- 2. Using integration, find the area of the region bounded by the line y=x and the parabola $y=2x-x^2$. [4]

SECTION C (Optional - 15 Marks)

Answer all questions from this section. (Unit VIII: Application of Calculus - 5 Marks; Unit IX: Linear Regression - 6 Marks; Unit X: Linear Programming - 4 Marks)

Question 8 (5 Marks)

Answer the following question.

1. The revenue function is given by $R(x) = 15x - x^2$ and the cost function is C(x) = 5x + 7. Find the output level x at which the marginal revenue equals the marginal cost. Determine the profit at this output level and find the price p when the marginal profit is zero. [5]

Question 9 (10 Marks)

Answer the following questions.

1. Solve the following Linear Programming Problem graphically: Maximize Z=5x+3y Subject to the constraints:

$$3x + 5y \le 15$$
$$5x + 2y \le 10$$
$$x, y \ge 0$$

[4]

2. A study yielded the following information: Mean of x = 20, Mean of y = 15, Standard deviation of x = 4, Standard deviation of y = 3, Regression coefficient $b_{yx} = 0.7$. Find the two regression equations and the coefficient of correlation (r). [6]