ISC CLASS XII MATHEMATICS (TEST PAPER 10) - SET 10

Time Allowed: 3 hours Maximum Marks: 80

General Instructions:

- 1. Candidates are required to attempt all questions from **Section A** and **EITHER Section B OR Section C**.
- 2. All working, including rough work, must be clearly shown. Omission of essential working will result in loss of marks.
- 3. The maximum mark for any single question is 6.
- 4. The intended marks for questions or parts of questions are given in brackets [].

SECTION A (Compulsory - 65 Marks)

All questions in this section are compulsory. (R&F: 10, Algebra: 10, Calculus: 32, Probability: 13)

Question 1 (10 \times 1 Mark = 10 Marks)

Answer the following questions.

- 1. Let * be an operation on \mathbb{Q} defined by a * b = a + b 1. Find the identity element for *. [1]
- 2. Find the value of $\sin^{-1} \left(\sin \frac{2\pi}{3}\right)$. [1]
- 3. State the range of the function $f(x) = \sin^{-1}(2x)$. [1]
- 4. Determine if the function $f: \mathbb{R} \to \mathbb{R}$ defined by f(x) = 2x + 5 is one-one. [1]
- 5. Find $\frac{dy}{dx}$ if $y = \sin(\sqrt{x})$. [1]
- 6. Write the general solution of the differential equation $\frac{dy}{dx} = 4x^3$. [1]
- 7. Find the value of k such that $f(x) = \begin{cases} \cos x & \text{if } x \le 0 \\ kx^2 + 1 & \text{if } x > 0 \end{cases}$ is continuous at x = 0. [1]
- 8. Evaluate: $\int \frac{1}{\sqrt{4-9x^2}} dx$. [1]
- 9. If P(A) = 0.3, P(B) = 0.4, and $P(A \cup B) = 0.6$. Find $P(A' \cap B')$. [1]
- 10. Write the formula for the variance of a Binomial distribution B(n,p). [1]

Question 2 $(3 \times 2 \text{ Marks} = 6 \text{ Marks})$

Answer the following questions.

- 1. If $y = \cos(m\cos^{-1}x)$, show that $(1-x^2)\frac{d^2y}{dx^2} x\frac{dy}{dx} + m^2y = 0$. [2]
- 2. A man 1.8 m tall walks away from a lamp post 5 m high at the rate of 1.2 m/s. Find the rate at which the length of his shadow is increasing. [2]
- 3. A box contains 10 items, 3 of which are defective. A sample of 2 items is drawn from the box. Find the probability that the sample contains exactly 1 defective item. [2]

Question 3 $(4 \times 4 \text{ Marks} = 16 \text{ Marks})$

Answer the following questions.

- 1. Using matrix methods, find the cofactors C_{21} and C_{33} for $A = \begin{pmatrix} 1 & 3 & 4 \\ 2 & 1 & 0 \\ 3 & 2 & 5 \end{pmatrix}$. Hence, find the value of |A|. [4]
- 2. Evaluate: $\int x \sec^2 x dx$. [4]
- 3. Find a point on the curve $f(x) = x^2 + 2x 8$ in the interval [-4, 2] where the tangent is parallel to the chord joining the end points. [4]
- 4. Solve the differential equation: $\frac{dy}{dx} = \frac{x^2 + y^2}{2xy}$. [4]

Question 4 (3 \times 6 Marks = 18 Marks)

Answer the following questions.

- 1. Evaluate: $\int \frac{1}{\cos^4 x + \sin^4 x} dx$. [6]
- 2. Show that for a given perimeter, the area of a trapezoid with non-parallel sides equal is maximum when it is an equilateral trapezoid. [6]

3. Prove that:
$$\begin{vmatrix} a^2 & a^2 - (b-c)^2 & bc \\ b^2 & b^2 - (c-a)^2 & ca \\ c^2 & c^2 - (a-b)^2 & ab \end{vmatrix} = (a-b)(b-c)(c-a)(a+b+c)^2. [6]$$

Question 5 (15 Marks)

Answer the following questions.

1. (a) Prove that the relation R on the set of 2×2 matrices with real entries, defined by ARB if det(A) = det(B), is an equivalence relation. [6] (b) A random variable X has the following probability distribution:

X	0	1	2	3	4
P(X)	0.1	0.2	0.3	0.3	0.1

Find the mean E(X) and the variance Var(X). [6] (c) Prove that A and B are independent events if and only if A and B' are independent. [3]

2

SECTION B (Optional - 15 Marks)

Answer all questions from this section. (Unit V: Vectors - 5 Marks; Unit VI: 3D Geometry - 6 Marks; Unit VII: Applications of Integrals - 4 Marks)

Question 6 (5 Marks)

Answer the following questions.

- 1. Find the scalar triple product $[\vec{a} \cdot (\vec{b} \times \vec{c})]$ if $\vec{a} = \hat{i} 2\hat{j} + 3\hat{k}$, $\vec{b} = 2\hat{i} + 3\hat{j} 4\hat{k}$, and $\vec{c} = \hat{i} 3\hat{j} + 5\hat{k}$. [2]
- 2. Find a unit vector perpendicular to both $\vec{a} + \vec{b}$ and $\vec{a} \vec{b}$, where $\vec{a} = 3\hat{i} + 2\hat{j} + 2\hat{k}$ and $\vec{b} = \hat{i} + 2\hat{j} 2\hat{k}$. [3]

Question 7 (10 Marks)

Answer the following questions.

- 1. Find the shortest distance between the lines $\vec{r} = (\hat{i} + 2\hat{j} + 3\hat{k}) + \lambda(\hat{i} 3\hat{j} + 2\hat{k})$ and $\vec{r} = (4\hat{i} + 5\hat{j} + 6\hat{k}) + \mu(2\hat{i} + 3\hat{j} + \hat{k})$. [6]
- 2. Using integration, find the area bounded by the parabola $x^2 = y$ and the line y = x + 2. [4]

SECTION C (Optional - 15 Marks)

Answer all questions from this section. (Unit VIII: Application of Calculus - 5 Marks; Unit IX: Linear Regression - 6 Marks; Unit X: Linear Programming - 4 Marks)

Question 8 (5 Marks)

Answer the following question.

1. The total cost C(x) and the revenue R(x) from the production and sale of x units of a product are given by C(x) = 5x + 350 and $R(x) = 50x - 2x^2$. Find the value of x that maximizes the profit. [5]

Question 9 (10 Marks)

Answer the following questions.

1. Solve the following Linear Programming Problem graphically: Minimize Z=x+2y Subject to the constraints:

$$2x + y \ge 3$$
$$x + 2y \ge 6$$
$$x, y \ge 0$$

[4]

2. Given the correlation coefficient r = 0.8, standard deviations $\sigma_x = 3$ and $\sigma_y = 5$, and means $\bar{x} = 10$ and $\bar{y} = 20$. Find the regression equation of y on x and estimate the value of y when x = 13. [6]