ISC CLASS XII MATHEMATICS (TEST PAPER 9) - SET 09

Time Allowed: 3 hours Maximum Marks: 80

General Instructions:

- Candidates are required to attempt all questions from Section A and EITHER Section B OR Section C.
- 2. All working, including rough work, must be clearly shown. Omission of essential working will result in loss of marks.
- 3. The maximum mark for any single question is 6.
- 4. The intended marks for questions or parts of questions are given in brackets [].

SECTION A (Compulsory - 65 Marks)

All questions in this section are compulsory. (R&F: 10, Algebra: 10, Calculus: 32, Probability: 13)

Question 1 (10 \times 1 Mark = 10 Marks)

Answer the following questions.

- 1. Let * be a binary operation on \mathbb{N} defined by $a * b = \mathrm{HCF}(a, b)$. Is the operation closed? Justify. [1]
- 2. Evaluate: $\cos^{-1} x + \sin^{-1} x \tan^{-1}(1)$. [1]
- 3. State the domain of the function $f(x) = \sec^{-1}(x-1)$. [1]
- 4. Let R be a relation on \mathbb{Z} defined by aRb if a-b is an even integer. Is R a transitive relation? [1]
- 5. Find $\frac{dy}{dx}$ if $y = x^{\log x}$. [1]
- 6. Write the general solution of the differential equation $\frac{dy}{dx} = \cos x$. [1]
- 7. Find the value of $\int_{-1}^{1} \frac{|x|}{x} dx$. [1]
- 8. Determine if $f(x) = \begin{cases} x^2 & \text{if } x \leq 1 \\ 2x 1 & \text{if } x > 1 \end{cases}$ is continuous at x = 1. [1]
- 9. If P(A) = 0.6 and P(B|A) = 0.5, find $P(A \cap B)$. [1]
- 10. If $X \sim B(n, p)$ and n = 10, p = 0.4, find the mean of the distribution. [1]

Question 2 (3 \times 2 Marks = 6 Marks)

Answer the following questions.

- 1. If $y = \cos^{-1}\left(\frac{1-x^2}{1+x^2}\right)$, find $\frac{d^2y}{dx^2}$. [2]
- 2. The surface area of a spherical soap bubble is increasing at the rate of 4 cm²/sec. Find the rate at which its volume is increasing when the radius is 8 cm. [2]
- 3. Two cards are drawn successively with replacement from a well-shuffled pack of 52 cards. Find the probability that the first card is a king and the second card is a queen. [2]

Question 3 $(4 \times 4 \text{ Marks} = 16 \text{ Marks})$

Answer the following questions.

- 1. Find the points on the curve $y = x^3 11x + 5$ at which the tangent is parallel to the line y = x. [4]
- 2. Find the particular solution of the differential equation $\frac{dy}{dx} = 1 + x + y + xy$, given y = 0 when x = 1. [4]
- 3. Evaluate: $\int \frac{5x+3}{(x-1)(x^2+4)} dx$. [4]
- 4. If $\begin{vmatrix} 2x+5 & 3 \\ 5x+2 & 9 \end{vmatrix} = 0$, find the value of x. [4]

Question 4 (3 \times 6 Marks = 18 Marks)

Answer the following questions.

- 1. Show that the semi-vertical angle of a cone of maximum volume and given total surface area is $\sin^{-1}\left(\frac{1}{3}\right)$. [6]
- 2. Evaluate: $\int \sqrt{9-x^2} \sin^{-1}\left(\frac{x}{3}\right) dx$. [6]
- 3. Prove that: $\begin{vmatrix} 1+x & 1 & 1\\ 1 & 1+y & 1\\ 1 & 1 & 1+z \end{vmatrix} = xyz\left(1+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right). [6]$

Question 5 (15 Marks)

Answer the following questions.

1. (a) Show that the function $f: \mathbb{R} - \left\{-\frac{4}{3}\right\} \to \mathbb{R} - \left\{\frac{2}{3}\right\}$ defined by $f(x) = \frac{2x-3}{3x+4}$ is both one-one and onto. Find f^{-1} . [6] (b) A factory has two machines, Machine A and Machine B. Machine A produces 60% of the items and Machine B produces 40%. Further, 2% of the items produced by Machine A and 1% produced by Machine B are defective. An item is drawn at random and found to be defective. Find the probability that it was produced by Machine B. [6] (c) Let A and B be two events such that $P(A) = \frac{1}{2}$ and $P(B) = \frac{1}{3}$ and $P(A \cap B) = \frac{1}{4}$. Find P(neither A nor B). [3]

2

SECTION B (Optional - 15 Marks)

Answer all questions from this section. (Unit V: Vectors - 5 Marks; Unit VI: 3D Geometry - 6 Marks; Unit VII: Applications of Integrals - 4 Marks)

Question 6 (5 Marks)

Answer the following questions.

- 1. Find the area of the parallelogram whose adjacent sides are $\vec{a}=2\hat{i}-\hat{j}+3\hat{k}$ and $\vec{b}=\hat{i}-2\hat{j}+\hat{k}$. [2]
- 2. Show that the vectors $\vec{a}=\hat{i}+3\hat{j}+\hat{k},$ $\vec{b}=2\hat{i}-\hat{j}-\hat{k},$ and $\vec{c}=7\hat{j}+3\hat{k}$ are coplanar. [3]

Question 7 (10 Marks)

Answer the following questions.

- 1. Find the distance between the two parallel planes 2x 2y + z + 3 = 0 and 4x 4y + 2z + 5 = 0. [6]
- 2. Using integration, find the area of the region bounded by $x = y^2$ and the line x + y = 2. [4]

SECTION C (Optional - 15 Marks)

Answer all questions from this section. (Unit VIII: Application of Calculus - 5 Marks; Unit IX: Linear Regression - 6 Marks; Unit X: Linear Programming - 4 Marks)

Question 8 (5 Marks)

Answer the following question.

1. The total cost function is given by $C(x) = 2x^3 - 15x^2 + 30x + 100$. Find the level of output x at which the marginal cost is minimum, and find the minimum marginal cost. [5]

Question 9 (10 Marks)

Answer the following questions.

1. Solve the following Linear Programming Problem graphically: Minimize Z=4x+3y Subject to the constraints:

$$x + 2y \ge 10$$
$$3x + 4y \le 24$$
$$x, y \ge 0$$

[4]

2. The two lines of regression are 2x + 3y = 4 and 4x + 5y = 12. Identify which is the regression line of y on x and x on y. Hence, find the coefficient of correlation r. [6]