ISC CLASS XII MATHEMATICS (TEST PAPER 17) - SET 17

Time Allowed: 3 hours Maximum Marks: 80

General Instructions:

- Candidates are required to attempt all questions from Section A and EITHER Section B OR Section C.
- 2. All working, including rough work, must be clearly shown. Omission of essential working will result in loss of marks.
- 3. The maximum mark for any single question is 6.
- 4. The intended marks for questions or parts of questions are given in brackets [].

SECTION A (Compulsory - 65 Marks)

All questions in this section are compulsory. (R&F: 10, Algebra: 10, Calculus: 32, Probability: 13)

Question 1 (10 \times 1 Mark = 10 Marks)

Answer the following questions.

- 1. Let * be a binary operation on \mathbb{Q} defined by a * b = a + b + ab. Find the inverse of the element -2. [1]
- 2. Find the value of $\sin\left(\frac{\pi}{3} \sin^{-1}\left(-\frac{1}{2}\right)\right)$. [1]
- 3. State the domain of the function $f(x) = \frac{1}{\sqrt{|x|-x}}$. [1]
- 4. If $f(x) = \begin{vmatrix} \cos x & -\sin x \\ \sin x & \cos x \end{vmatrix}$, find f'(x). [1]
- 5. Find $\frac{dy}{dx}$ if $x^y = y^x$. [1]
- 6. Write the value of $\int_{-\pi}^{\pi} \tan x dx$. [1]
- 7. What is the order and degree of the differential equation $\frac{dy}{dx} = \sqrt{\frac{y}{x}}$? [1]
- 8. Find the slope of the tangent to the curve $y = x \log x$ at x = e. [1]
- 9. If P(A) = 0.5 and P(B|A') = 0.2, and A and B are independent, find P(B). [1]
- 10. If $X \sim B(n, p)$ has variance 9 and p = 0.4, find the value of n. [1]

Question 2 $(3 \times 2 \text{ Marks} = 6 \text{ Marks})$

Answer the following questions.

1. If
$$x = a(\cos t + t \sin t)$$
 and $y = a(\sin t - t \cos t)$, find $\frac{d^2y}{dx^2}$. [2]

- 2. The edges of a variable cube are increasing at the rate of 3 cm/s. How fast is the volume of the cube increasing when the edge is 10 cm? [2]
- 3. A fair coin is tossed until a head appears or 4 tosses are completed. Find the probability distribution of the number of tosses. [2]

Question 3 (4×4 Marks = 16 Marks)

Answer the following questions.

- 1. Show that the function $f(x) = 2x^3 3x^2 12x + 6$ has local maxima at x = -1 and local minima at x = 2. [4]
- 2. Find the particular solution of the differential equation: $\frac{dy}{dx} = 1 + x + y^2 + xy^2$, given y(0) = 1. [4]
- 3. Evaluate: $\int \frac{dx}{x(x^3+1)}$. [4]
- 4. Find the inverse of the matrix $A = \begin{pmatrix} 3 & 1 & 2 \\ 2 & 1 & 0 \\ 1 & 2 & 3 \end{pmatrix}$ using the adjoint method. [4]

Question 4 (3 \times 6 Marks = 18 Marks)

Answer the following questions.

- A wire of length L is cut into two pieces. One piece is bent into a circle and the other into a square. Where should the wire be cut so that the sum of the areas enclosed by both is minimum?
 [6]
- 2. Evaluate: $\int_0^1 \frac{\log(1+x)}{1+x^2} dx$. [6]
- 3. Solve the system of linear equations using the matrix inverse method: [6]

$$x + y + z = 6$$
$$y - z = 2$$
$$2x - 3y + 4z = 9$$

Question 5 (15 Marks)

Answer the following questions.

1. (a) Prove that: $2\tan^{-1}\left(\frac{1}{3}\right) + \tan^{-1}\left(\frac{1}{7}\right) = \frac{\pi}{4}$. [6] (b) An electronic manufacturer has two manufacturing plants, Plant A and Plant B. Plant A produces 60% of the output and Plant B produces 40%. 2% of the items produced by A and 3% of the items produced by B are defective. An item is selected at random and found to be non-defective. Find the probability that it was produced by Plant B. [6] (c) Show that the function $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = \frac{x}{1+|x|}$ is one-one. [3]

2

SECTION B (Optional - 15 Marks)

Answer all questions from this section. (Unit V: Vectors - 5 Marks; Unit VI: 3D Geometry - 6 Marks; Unit VII: Applications of Integrals - 4 Marks)

Question 6 (5 Marks)

Answer the following questions.

- 1. Find the area of the parallelogram whose adjacent sides are the vectors $\vec{a}=3\hat{i}+\hat{j}+4\hat{k}$ and $\vec{b}=\hat{i}-\hat{j}+\hat{k}$. [2]
- 2. If the magnitude of the scalar projection of the vector $\lambda \hat{i} + \hat{j} + 4\hat{k}$ on the vector $2\hat{i} + 6\hat{j} + 3\hat{k}$ is 1, find the value of λ . [3]

Question 7 (10 Marks)

Answer the following questions.

- 1. Find the equation of the plane passing through the points (3,4,1) and (0,1,0) and parallel to the line $\frac{x+3}{3} = \frac{y-3}{2} = \frac{z-2}{5}$. [6]
- 2. Using integration, find the area bounded by the curve $x = y^2$ and the line x = 4. [4]

SECTION C (Optional - 15 Marks)

Answer all questions from this section. (Unit VIII: Application of Calculus - 5 Marks; Unit IX: Linear Regression - 6 Marks; Unit X: Linear Programming - 4 Marks)

Question 8 (5 Marks)

Answer the following question.

1. The total cost function for a commodity is given by $C(x) = \frac{1}{3}x^3 - 5x^2 + 28x + 10$. Find the level of output x at which the marginal cost is minimum, and find the minimum marginal cost. [5]

Question 9 (10 Marks)

Answer the following questions.

1. Solve the following Linear Programming Problem graphically: Maximize Z=3x+4y Subject to the constraints:

$$\begin{aligned} x+y &\leq 4 \\ x &\geq 0 \\ y &\geq 0 \\ x,y &\geq 0 \end{aligned}$$

[4]

2. The two lines of regression are 4x + 3y + 7 = 0 and 3x + 4y + 8 = 0. Find the coefficient of correlation r. If $\sigma_x = 2$, find σ_y . (Assume 4x + 3y + 7 = 0 is the regression line of y on x). [6]