ISC CLASS XII MATHEMATICS (TEST PAPER 11) - SET 11

Time Allowed: 3 hours Maximum Marks: 80

General Instructions:

- 1. Candidates are required to attempt all questions from **Section A** and **EITHER Section B OR Section C**.
- 2. All working, including rough work, must be clearly shown. Omission of essential working will result in loss of marks.
- 3. The maximum mark for any single question is 6.
- 4. The intended marks for questions or parts of questions are given in brackets [].

SECTION A (Compulsory - 65 Marks)

All questions in this section are compulsory. (R&F: 10, Algebra: 10, Calculus: 32, Probability: 13)

Question 1 (10 \times 1 Mark = 10 Marks)

Answer the following questions.

- 1. Let * be a binary operation on \mathbb{Z} defined by a*b=a+3b. Is the operation closed on \mathbb{Z} ? Justify. [1]
- 2. Evaluate: $\cot(\tan^{-1}(\frac{1}{2}))$. [1]
- 3. State the range of the function $f(x) = \sin^{-1}(2x^2 1)$. [1]
- 4. Define the equivalence class of an element a with respect to an equivalence relation R on set A. [1]
- 5. Find $\frac{dy}{dx}$ if $\log(xy) = x^2$. [1]
- 6. Write the type of solution obtained when we use the Variable Separable Method to solve a differential equation. [1]
- 7. Determine if $f(x) = \begin{cases} \frac{\log(1+2x)}{x} & \text{if } x \neq 0 \\ 2 & \text{if } x = 0 \end{cases}$ is continuous at x = 0. [1]
- 8. Find the area bounded by the curve y = 2x from x = 0 to x = 2 (Integral expression only). [1]
- 9. If A and B are independent events, simplify P(A|B) + P(A'|B). [1]
- 10. If X is a random variable, write the formula for variance in terms of E(X) and $E(X^2)$. [1]

Question 2 (3 \times 2 Marks = 6 Marks)

Answer the following questions.

1. If
$$y = x^5 + 3x^3 + 2$$
, find $\frac{d^2y}{dx^2}$ at $x = 1$. [2]

- 2. A particle moves along the curve $6y = x^3 + 2$. Find the point on the curve at which the y-coordinate is changing 8 times as fast as the x-coordinate. [2]
- 3. A bag contains 5 white and 7 black balls. Two balls are drawn without replacement. Find the probability that both are of the same color. [2]

Question 3 $(4 \times 4 \text{ Marks} = 16 \text{ Marks})$

Answer the following questions.

- 1. Find the intervals in which the function $f(x) = 2x^3 9x^2 + 12x + 15$ is strictly increasing or strictly decreasing. [4]
- 2. Find the particular solution of the differential equation: $\frac{dy}{dx} + y \cot x = 2x + x^2 \cot x$, given $y(\frac{\pi}{2}) = 0.$ [4]
- 3. Evaluate: $\int \frac{dx}{\sqrt{9-x^2}}$. [4]
- 4. Given the matrices $A = \begin{pmatrix} 2 & 1 \\ 3 & 2 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$. Find a matrix X such that $A^TX = B$. [4]

Question 4 (3 \times 6 Marks = 18 Marks)

Answer the following questions.

- 1. Show that the triangle of maximum area that can be inscribed in a circle of radius r is an equilateral triangle. [6]
- 2. Evaluate: $\int \log(x^2 + a^2) dx$. [6]
- 3. Solve the system of linear equations using the matrix inverse method: [6]

$$x + 2y - 3z = 6$$
$$3x + 2y - 2z = 3$$

$$3x + 2y - 2z = 3$$

$$2x - y + z = 2$$

Question 5 (15 Marks)

Answer the following questions.

1. (a) Prove that: $\tan^{-1}(1) + \tan^{-1}(2) + \tan^{-1}(3) = \pi$. [6] (b) In a test, a student either guesses the answer or knows the answer. The probability that he guesses is $\frac{1}{3}$ and the probability that he knows the answer is $\frac{2}{3}$. Assuming that a student who guesses has $\frac{1}{4}$ chance of being correct, what is the probability that the student knows the answer, given that he answered it correctly? [6] (c) Let R be a relation on \mathbb{Z} defined by $(a,b) \in R$ if a-b is divisible by 5. Show that R is an equivalence relation. [3]

2

SECTION B (Optional - 15 Marks)

Answer all questions from this section. (Unit V: Vectors - 5 Marks; Unit VI: 3D Geometry - 6 Marks; Unit VII: Applications of Integrals - 4 Marks)

Question 6 (5 Marks)

Answer the following questions.

- 1. If $|\vec{a}|=2,\,|\vec{b}|=3,$ and $\vec{a}\cdot\vec{b}=4,$ find $|\vec{a}-\vec{b}|.$ [2]
- 2. If $\vec{a}, \vec{b}, \vec{c}$ are three vectors such that $\vec{a} + \vec{b} + \vec{c} = \vec{0}$, and $|\vec{a}| = 3$, $|\vec{b}| = 4$, $|\vec{c}| = 5$, find $\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}$. [3]

Question 7 (10 Marks)

Answer the following questions.

- 1. Find the foot of the perpendicular drawn from the point P(0,2,3) to the line $\frac{x+3}{5} = \frac{y-1}{2} = \frac{z+4}{3}$. [6]
- 2. Using integration, find the area of the region bounded by the parabola $y^2 = 4x$ and the line x = 3. [4]

SECTION C (Optional - 15 Marks)

Answer all questions from this section. (Unit VIII: Application of Calculus - 5 Marks; Unit IX: Linear Regression - 6 Marks; Unit X: Linear Programming - 4 Marks)

Question 8 (5 Marks)

Answer the following question.

1. The total cost C(x) and the revenue R(x) functions for a firm are $C(x) = 2x^2 + 15x + 300$ and $R(x) = 80x - 2x^2$. Find the level of output x at which the profit is maximum. Find the maximum profit. [5]

Question 9 (10 Marks)

Answer the following questions.

1. Solve the following Linear Programming Problem graphically: Minimize Z=3x+2y Subject to the constraints:

$$x + y \le 8$$
$$x + 2y \ge 4$$
$$x, y \ge 0$$

[4]

2. The regression equations are x = 0.8y + a and y = 0.4x + b. Find the value of the correlation coefficient r. Given that $\sigma_x = 3$, find the value of σ_y . [6]