ISC CLASS XII MATHEMATICS (TEST PAPER 7) - SET 07

Time Allowed: 3 hours Maximum Marks: 80

General Instructions:

- 1. Candidates are required to attempt all questions from **Section A** and **EITHER Section B OR Section C**.
- 2. All working, including rough work, must be clearly shown. Omission of essential working will result in loss of marks.
- 3. The maximum mark for any single question is 6.
- 4. The intended marks for questions or parts of questions are given in brackets [].

SECTION A (Compulsory - 65 Marks)

All questions in this section are compulsory. (R&F: 10, Algebra: 10, Calculus: 32, Probability: 13)

Question 1 (10 \times 1 Mark = 10 Marks)

Answer the following questions.

- 1. Let * be a binary operation on \mathbb{Z} defined by a*b=a+b-4. Find the inverse of the element 5. [1]
- 2. Evaluate: $\tan^{-1}(2) + \tan^{-1}(3)$. [1]
- 3. If $f(x) = 8x^3$ and $g(x) = x^{1/3}$, find $f \circ g(x)$. [1]
- 4. Let R be an equivalence relation on a set A. State the property relating the union of two distinct equivalence classes [a] and [b]. [1]
- 5. Find $\frac{dy}{dx}$ if $2x + 3y = \sin y$. [1]
- 6. Evaluate: $\int_{0}^{\pi/2} \sin^{3} x dx$. [1]
- 7. Find the order of the differential equation of the family of curves $y = Ae^x + Be^{2x}$. [1]
- 8. Find $\frac{dy}{dx}$ if $y = 5^{x^2}$. [1]
- 9. If $P(A \cup B) = 0.8$, P(A) = 0.3, P(B) = 0.5, find P(B|A). [1]
- 10. If $A = \begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix}$, find $\det(A^{-1})$. [1]

Question 2 $(3 \times 2 \text{ Marks} = 6 \text{ Marks})$

Answer the following questions.

- 1. If $x = a(\cos t + t)$ and $y = a(\sin t 1)$, find $\frac{d^2y}{dx^2}$. [2]
- 2. Find the intervals in which the function $f(x) = \sin x + \cos x$ is strictly increasing in $[0, 2\pi]$. [2]
- 3. A point is chosen at random from the square with vertices (0,0),(1,0),(1,1),(0,1). Find the probability that the chosen point lies inside the circle $x^2 + y^2 = 1$. [2]

Question 3 $(4 \times 4 \text{ Marks} = 16 \text{ Marks})$

Answer the following questions.

1. Given $A = \begin{pmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix}$. Find the minor M_{13} , the cofactor C_{21} , and verify that $a_{11}C_{11} + a_{12}C_{12} + a_{13}C_{13} = |A|$. [4]

- 2. Solve the differential equation: $x \frac{dy}{dx} = y(\log y \log x + 1)$. [4]
- 3. Evaluate: $\int \frac{x^2+1}{(x^2+2)(x^2+3)} dx$. [4]
- 4. The radius of a right circular cylinder is 3 cm and its height is 5 cm. Find the approximate change in its volume when the radius is increased by 0.03 cm and the height is decreased by 0.01 cm. [4]

Question 4 (3 \times 6 Marks = 18 Marks)

Answer the following questions.

- 1. Find the coordinates of the point on the parabola $y = x^2 + 7x + 2$ which is nearest to the line y = 3x 3. [6]
- 2. Evaluate: $\int e^{2x} \sin(x/2) dx$. [6]
- 3. Prove that $A \cdot \operatorname{adj}(A) = |A|I$, where $A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 5 & 0 \\ 2 & 4 & 3 \end{pmatrix}$. [6]

Question 5 (15 Marks)

Answer the following questions.

1. (a) Prove that $\cos^{-1}\left(\frac{4}{5}\right) + \cos^{-1}\left(\frac{12}{13}\right) = \cos^{-1}\left(\frac{33}{65}\right)$. [6] (b) A person has undertaken a construction job. The probabilities are 0.65 that there will be a strike, 0.80 that the construction job will be completed on time if there is no strike, and 0.32 that the construction job will be completed on time if there is a strike. Find the probability that the job will be completed on time. [4] (c) In a group of students, two are selected. The probability that the first student is a boy is 0.7 and the probability that the second student is a boy, given that the first is a boy, is 0.8. Find the probability that both students selected are boys. [5]

2

SECTION B (Optional - 15 Marks)

Answer all questions from this section. (Unit V: Vectors - 5 Marks; Unit VI: 3D Geometry - 6 Marks; Unit VII: Applications of Integrals - 4 Marks)

Question 6 (5 Marks)

Answer the following questions.

- 1. Find the angle between the diagonals of the parallelogram whose adjacent sides are $2\hat{i} + \hat{j} + \hat{k}$ and $\hat{i} \hat{j} + 2\hat{k}$. [2]
- 2. Find the area of a triangle having the points A(1,1,1), B(1,2,3), and C(2,3,1) as its vertices using vector methods. [3]

Question 7 (10 Marks)

Answer the following questions.

- 1. Find the angle between the planes x 2y + 2z = 5 and 2x + 2y + z = 1. Find the distance of the point (1,0,1) from the first plane. [6]
- 2. Using integration, find the area bounded by the curve $y = x^2 4x$ and the x-axis. [4]

SECTION C (Optional - 15 Marks)

Answer all questions from this section. (Unit VIII: Application of Calculus - 5 Marks; Unit IX: Linear Regression - 6 Marks; Unit X: Linear Programming - 4 Marks)

Question 8 (5 Marks)

Answer the following question.

1. The total cost C(x) for producing x units of a product is $C(x) = 200 + 0.05x + 0.0001x^2$. Find the marginal cost (MC), average cost (AC), and the value of x for which the marginal cost is minimum. [5]

Question 9 (10 Marks)

Answer the following questions.

1. Solve the following Linear Programming Problem graphically: Minimize Z=5x+10y Subject to the constraints:

$$x + 2y \le 120$$
$$x + y \ge 60$$
$$x - 2y \ge 0$$
$$x, y \ge 0$$

[4]

2. The regression line of y on x is y = 3x + 1 and the regression line of x on y is x = 0.5y - 0.5. Find the correlation coefficient r between x and y and the variance of y if the standard deviation of x is $\sigma_x = 2$. [6]