ISC CLASS XII MATHEMATICS (TEST PAPER 18) - SET 18

Time Allowed: 3 hours Maximum Marks: 80

General Instructions:

- 1. Candidates are required to attempt all questions from **Section A** and **EITHER Section B OR Section C**.
- 2. All working, including rough work, must be clearly shown. Omission of essential working will result in loss of marks.
- 3. The maximum mark for any single question is 6.
- 4. The intended marks for questions or parts of questions are given in brackets [].

SECTION A (Compulsory - 65 Marks)

All questions in this section are compulsory. (R&F: 10, Algebra: 10, Calculus: 32, Probability: 13)

Question 1 (10 \times 1 Mark = 10 Marks)

Answer the following questions.

- 1. Let * be a binary operation on \mathbb{R} defined by a*b=a+b-1. Find the inverse of the element 3. [1]
- 2. Evaluate: $\cos\left(\tan^{-1}\frac{3}{4}\right)$. [1]
- 3. State the range of the function $f: \mathbb{R} \to \mathbb{R}$ defined by f(x) = |x|. [1]
- 4. State the value of $\det(\operatorname{adj}(A))$ if A is a 3×3 matrix and $\det(A) = 5$. [1]
- 5. Find $\frac{dy}{dx}$ if $x^2 + y^2 = 25$. [1]
- 6. Write the value of $\int_0^2 x^2 dx$. [1]
- 7. Check if the differential equation $\frac{dy}{dx} = \frac{x^2 + y^2}{x^2}$ is homogeneous. [1]
- 8. Determine the value of k for which $f(x) = \begin{cases} \frac{\sin 3x}{x} & \text{if } x \neq 0 \\ k & \text{if } x = 0 \end{cases}$ is continuous at x = 0. [1]
- 9. If A and B are independent events, simplify $P(A \cap B')$ in terms of P(A) and P(B). [1]
- 10. State whether the relation R defined on \mathbb{Z} by aRb if a-b is divisible by 3 is symmetric. [1]

Question 2 $(3 \times 2 \text{ Marks} = 6 \text{ Marks})$

Answer the following questions.

- 1. If $x = a(\theta \sin \theta)$ and $y = a(1 \cos \theta)$, find $\frac{dy}{dx}$. [2]
- 2. The perimeter of a square is increasing at the rate of 4 cm/s. Find the rate at which its area is increasing when the side length is 8 cm. [2]
- 3. Three coins are tossed. Find the probability of getting exactly two heads, given that the first toss is a head. [2]

Question 3 $(4 \times 4 \text{ Marks} = 16 \text{ Marks})$

Answer the following questions.

- 1. Evaluate: $\int x^2 \log x dx$. [4]
- 2. Find the particular solution of the differential equation: $\frac{dy}{dx} + y \cos x = \sin x \cos x$, given y(0) = 1. [4]
- 3. Verify Lagrange's Mean Value Theorem for the function $f(x) = x^2 + 2x + 3$ on the interval [4, 6]. [4]
- 4. If $A = \begin{pmatrix} 3 & 1 \\ 7 & 5 \end{pmatrix}$ and $B = \begin{pmatrix} 4 & 6 \\ 2 & 8 \end{pmatrix}$, find the matrix X such that AX = B. [4]

Question 4 (3 \times 6 Marks = 18 Marks)

Answer the following questions.

- 1. Find the coordinates of the point on the curve $y = x^2 + 7x + 2$ which is closest to the origin. [6]
- 2. Evaluate: $\int \frac{dx}{\sqrt{x^2+4x+13}}$. [6]
- 3. Solve the following system of linear equations using the matrix method: [6]

$$x + 2y - 3z = 6$$

$$2x - y + z = 2$$

$$4x - 2y + 3z = 4$$

Question 5 (15 Marks)

Answer the following questions.

1. (a) Prove that: $\cos^{-1}x + \cos^{-1}y = \cos^{-1}\left(xy - \sqrt{1-x^2}\sqrt{1-y^2}\right)$, where $x,y \in [-1,1]$ and $x+y \geq 0$. [6] (b) The probability of a successful hit by a gun is 0.1. Find the minimum number of shots required so that the probability of at least one hit is greater than 0.5. [6] (c) Find the general solution of the differential equation: $\frac{dy}{dx} = \frac{x^2 + 3y^2}{3x^2 + y^2}$. [3]

2

SECTION B (Optional - 15 Marks)

Answer all questions from this section. (Unit V: Vectors - 5 Marks; Unit VI: 3D Geometry - 6 Marks; Unit VII: Applications of Integrals - 4 Marks)

Question 6 (5 Marks)

Answer the following questions.

- 1. Find the area of the parallelogram whose diagonals are $\vec{d}_1 = 2\hat{i} \hat{j} + \hat{k}$ and $\vec{d}_2 = \hat{i} + 3\hat{j} \hat{k}$. [2]
- 2. Show that the vectors $\vec{a} = \hat{i} 2\hat{j} + 3\hat{k}$, $\vec{b} = -2\hat{i} + 3\hat{j} + 4\hat{k}$, and $\vec{c} = -3\hat{j} + 10\hat{k}$ are coplanar. [3]

Question 7 (10 Marks)

Answer the following questions.

- 1. Find the image of the point (1,6,3) in the line $\frac{x}{1} = \frac{y-1}{2} = \frac{z-2}{3}$. [6]
- 2. Using integration, find the area bounded by the parabola $y^2 = 4x$ and the line y = x. [4]

SECTION C (Optional - 15 Marks)

Answer all questions from this section. (Unit VIII: Application of Calculus - 5 Marks; Unit IX: Linear Regression - 6 Marks; Unit X: Linear Programming - 4 Marks)

Question 8 (5 Marks)

Answer the following question.

1. The total cost function is given by $C(x) = 2x^2 + 3x + 1$. Find the marginal cost (MC) and the marginal revenue (MR) when x = 1, if the total revenue function is $R(x) = 10x - x^2$. Hence, comment on the profit level. [5]

Question 9 (10 Marks)

Answer the following questions.

1. Solve the following Linear Programming Problem graphically: Minimize Z=3x+5y Subject to the constraints:

$$x + 3y \ge 3$$
$$x + y \ge 2$$
$$x, y \ge 0$$

[4]

2. The two lines of regression are y = 2x + 1 and x = 0.5y + 3. Find the means of x and y. Hence, find the coefficient of correlation r. [6]