PRACTICE QUESTION PAPER - XVII CLASS XII - MATHEMATICS (041)

Time Allowed: 3 Hours Maximum Marks: 80

General Instructions:

- 1. This Question Paper contains 38 questions. All questions are compulsory.
- 2. The question paper is divided into FIVE Sections A, B, C, D and E.
- 3. Section A comprises of 20 questions of 1 mark each. (18 MCQs + 2 Assertion-Reasoning)
- 4. Section B comprises of 5 questions of 2 marks each.
- 5. Section C comprises of 6 questions of 3 marks each.
- 6. Section **D** comprises of **4** questions of **5** marks each.
- 7. Section ${\bf E}$ comprises of ${\bf 3}$ Case Study Based Questions of ${\bf 4}$ marks each.
- 8. There is no overall choice in the question paper. However, an internal choice has been provided in 2 questions in Section B, 3 questions in Section C, 2 questions in Section D and 2 questions in Section E (in the sub-parts).
- 9. Use of calculators is **not** permitted.

SECTION A (20 Marks)

This section comprises 20 questions of 1 mark each. Questions 1-18 are Multiple Choice Questions (MCQs) and questions 19-20 are Assertion-Reason based questions.

Multiple Choice Questions (MCQs) and Assertion-Reason Questions (Combined Enumeration)

- 1. The binary operation * on \mathbb{Z} defined by $a*b=a^2+b^2$ is:
 - (a) Commutative and Associative
 - (b) Associative but not Commutative
 - (c) Commutative but not Associative
 - (d) Neither Commutative nor Associative
- 2. The function $f: \mathbb{R} \to \mathbb{R}$ defined by f(x) = |x| (greatest integer function) is:
 - (a) One-one
 - (b) Onto
 - (c) Bijective
 - (d) Neither one-one nor onto
- 3. The value of $\tan\left(\frac{1}{2}\cos^{-1}\frac{7}{25}\right)$ is:
 - (a) 3/4
 - (b) 1/7
 - (c) 4/3
 - (d) 1/5
- 4. The range of $\sec^{-1} x$ is:
 - (a) $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \{0\}$
 - (b) $[0, \pi]$
 - (c) $[0,\pi] \left\{\frac{\pi}{2}\right\}$
 - (d) $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

- 5. If A is a square matrix of order n, then |adj(adj A)| is equal to:
 - (a) $|A|^{n-1}$
 - (b) $|A|^{(n-1)^2}$
 - (c) $|A|^{n^2}$
 - (d) $|A|^n$
- 6. If $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, then the matrix product AB is:
 - (a) $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$
 - (b) $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$
 - (c) $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$
 - (d) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
- 7. If the matrix $A = \begin{bmatrix} 2 & k \\ 3 & 4 \end{bmatrix}$ is singular, then the value of k is:
 - (a) 3/8
 - (b) 8/3
 - (c) -8/3
 - (d) 4
- 8. If A is an invertible matrix of order 2, then $det(A^{-1})$ is equal to:
 - (a) det(A)
 - (b) $\frac{1}{\det(A)}$
 - (c) 1
 - (d) 0
- 9. If $y = \log(\tan x)$, then $\frac{dy}{dx}$ is:
 - (a) $\sec x \tan x$
 - (b) $\frac{\sec^2 x}{x}$ (c) $\frac{2}{\sin 2x}$

 - (d) $\sec^2 x$
- 10. The function $f(x) = x^3 6x^2 + 15x 8$ is:
 - (a) Strictly decreasing on \mathbb{R}
 - (b) Strictly increasing on \mathbb{R}
 - (c) Decreasing on (0,4)
 - (d) Increasing on (0,4)
- 11. $\int e^x(\sec x + \sec x \tan x) dx$ is equal to:
 - (a) $e^x \tan x + C$
 - (b) $e^x \sec x + C$
 - (c) $e^x \cot x + C$

- (d) $e^x \csc x + C$
- 12. The value of $\int_0^\pi \frac{dx}{1+\sin x}$ is:
 - (a) 0
 - (b) 1
 - (c) 2
 - (d) $\pi/2$
- 13. The particular solution of $\frac{dy}{dx} = 4x^3y$, where y(0) = 1, is:
 - (a) $y = e^{x^4}$
 - (b) $y = e^{4x^3}$
 - (c) $y = x^4 + 1$
 - (d) $y = \log(x^4 + 1)$
- 14. If the vectors \vec{a} and \vec{b} are such that $|\vec{a}|=3, |\vec{b}|=2\sqrt{2}$ and $|\vec{a}\times\vec{b}|=6$, then the angle between \vec{a} and \vec{b} is:
 - (a) $\pi/4$
 - (b) $\pi/6$
 - (c) $\pi/3$
 - (d) $\pi/2$
- 15. If \vec{a} is a non-zero vector of magnitude a and λ is a non-zero scalar, then $\lambda \vec{a}$ is a unit vector if:
 - (a) $\lambda = 1$
 - (b) $\lambda = -1$
 - (c) $a = |\lambda|$
 - (d) $a = 1/|\lambda|$
- 16. The intercepts made by the plane x 2y + 3z = 6 on the coordinate axes are:
 - (a) 6, -3, 2
 - (b) 1, -2, 3
 - (c) 6, 3, 2
 - (d) 1, -1/2, 1/3
- 17. The angle between the two lines $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ and $\frac{x}{2} = \frac{y}{3} = \frac{z}{4}$ is:
 - (a) $\cos^{-1}\left(\frac{10}{\sqrt{14}\sqrt{29}}\right)$
 - (b) $\cos^{-1}\left(\frac{20}{29}\right)$
 - (c) $\cos^{-1}\left(\frac{20}{\sqrt{14}\sqrt{29}}\right)$
 - (d) $\cos^{-1}\left(\frac{10}{29}\right)$
- 18. The feasible region for an LPP is shown in the figure. If the objective function is Z = 3x 4y, the minimum value of Z occurs at:
 - (a) (0,0)
 - (b) (0,8)
 - (c) (5,0)
 - (d) (4, 10)

Assertion-Reasoning Based Questions

In questions 19 and 20, a statement of Assertion (A) is followed by a statement of Reason (R). Choose the correct answer from the following options:

- (a) Both A and R are true and R is the correct explanation of A.
- (b) Both A and R are true but R is not the correct explanation of A.
- (c) A is true but R is false.
- (d) A is false but R is true.
- 19. Assertion (A): For any two events A and B, $P(A' \cup B') = 1 P(A \cap B)$. Reason (R): $A' \cup B' = (A \cap B)'$ by De Morgan's Law, and P(E') = 1 P(E).
- 20. Assertion (A): The derivative of x^x with respect to x is $x^x(1 + \log x)$. Reason (R): $\frac{d}{dx}(x^n) = nx^{n-1}$ for any real number n.

SECTION B (10 Marks)

This section comprises 5 questions of 2 marks each.

- 21. Find $\frac{dy}{dx}$ if $x\sqrt{1+y} + y\sqrt{1+x} = 0$, where $x \neq y$.
- 22. Find the vector equation of the line passing through the point (5, 2, -4) and parallel to the vector $3\hat{i} + 2\hat{j} 8\hat{k}$.

OR

If the dot product of two vectors is 12 and the magnitude of their cross product is $6\sqrt{3}$, find the angle between the two vectors.

23. Evaluate $\int e^x \left(\frac{x-3}{(x-1)^3}\right) dx$.

OR

If $y = \cos^{-1} x$, find $\frac{d^2 y}{dx^2}$ in terms of y alone.

- 24. Find the values of x and y if $2\begin{bmatrix} 1 & 3 \\ 0 & x \end{bmatrix} + \begin{bmatrix} y & 0 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 5 & 6 \\ 1 & 8 \end{bmatrix}$.
- 25. A pair of dice is thrown. Find the probability of getting a doublet or a sum of 8.

SECTION C (18 Marks)

This section comprises 6 questions of 3 marks each.

- 26. If $f(x) = \frac{4x+3}{6x-4}$, $x \neq \frac{2}{3}$, show that $f \circ f(x) = x$. Hence, find $f^{-1}(x)$.
- 27. Evaluate $\int \frac{x^2+1}{(x^2+2)(x^2+3)} dx$.

 \mathbf{OR}

Evaluate $\int \frac{dx}{\sin x + \cos x}$.

28. Find the particular solution of the differential equation $\frac{dy}{dx} = 1 + x + y + xy$, given that y(0) = 0.

OR

Find the equation of the tangent line to the curve $y = x^2 - 2x + 7$ which is parallel to the line 2x - y + 9 = 0.

29. Find the vector equation of the plane passing through the intersection of the planes $\vec{r} \cdot (\hat{i} + \hat{j} + \hat{k}) = 6$ and $\vec{r} \cdot (2\hat{i} + 3\hat{j} + 4\hat{k}) = -5$ and the point (1, 1, 1).

4

 \mathbf{OR}

Show that the lines $\frac{x-5}{4} = \frac{y-7}{4} = \frac{z+3}{-5}$ and $\frac{x-8}{7} = \frac{y-4}{1} = \frac{z-5}{3}$ are coplanar.

- 30. If $A = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$ and $A + A^T = I$, then find the value of α .
- 31. Determine the maximum value of Z = 11x + 7y subject to $x \le 3, y \le 2, x \ge 0, y \ge 0$.

SECTION D (20 Marks)

This section comprises 4 questions of 5 marks each.

32. Using integration, find the area of the region bounded by the curves y = |x - 1| and y = 1.

 \mathbf{OR}

Evaluate $\int_0^{\pi/4} \frac{\sin x + \cos x}{9 + 16 \sin 2x} dx.$

- 33. Use matrix method to solve the following system of equations: $\frac{2}{x} + \frac{3}{y} + \frac{10}{z} = 4$, $\frac{4}{x} \frac{6}{y} + \frac{5}{z} = 1$, $\frac{6}{x} + \frac{9}{y} \frac{20}{z} = 2$.
- 34. Find the maximum volume of an inverted cone with semi-vertical angle α and slant height L.

OR

Evaluate $\int \frac{x^2+1}{(x-1)^2(x+3)} dx$.

35. Find the coordinates of the foot of the perpendicular drawn from the point A(1,8,4) to the line joining B(0,-1,3) and C(2,-3,-1).

SECTION E (12 Marks)

This section comprises 3 case study based questions of 4 marks each.

36. Case Study 1: Area Minimization

A rectangular sheet of metal is 12 cm wide and 20 cm long. A square is cut from each corner of the sheet, and the remaining material is folded up to form an open box with a square base. Let x be the side length of the square cut out.

Based on the given information, answer the following questions:

- (a) Find the dimensions of the base of the open box in terms of x. (1 Mark)
- (b) Express the volume V of the box as a function of x. (3 Marks)

OR

- (c) Find the value of x for which the volume of the box is maximum. (3 Marks)
- 37. Case Study 2: Bayes' Theorem in Production

A factory has three machines M_1, M_2, M_3 which produce 30%, 40%, 30% of the total production, respectively. It is known that 2% of the products from $M_1, 1\%$ from M_2 , and 3% from M_3 are defective. A product is selected at random and found to be defective.

Based on the given information, answer the following questions:

- (a) Find the probability that a product is defective, given it came from machine M_2 . (1 Mark)
- (b) Find the probability that a randomly selected product is defective. (3 Marks)

OR

(c) Find the probability that the defective product was produced by machine M_1 . (3 Marks)

5

38. Case Study 3: Traffic Lights and Intersections

Two lines of sight from a traffic control tower to two vehicles are modeled by the lines L_1 and L_2 passing through the origin.

$$L_1: \frac{x}{1} = \frac{y}{1} = \frac{z}{-2}$$

$$L_2: \frac{x}{2} = \frac{y}{-1} = \frac{z}{1}$$

The horizontal ground is modelled by the plane z=0.

Based on the given information, answer the following questions:

- (a) Write the direction vectors of the lines L_1 and L_2 . (1 Mark)
- (b) Find the angle between the two lines of sight L_1 and L_2 . (3 Marks)

OF

(c) Find the coordinate of the point where the line L_1 intersects the plane x - y + 2z = 5. (3 Marks)