PRACTICE QUESTION PAPER - XIV CLASS XII - MATHEMATICS (041)

Time Allowed: 3 Hours Maximum Marks: 80

General Instructions:

- 1. This Question Paper contains 38 questions. All questions are compulsory.
- 2. The question paper is divided into FIVE Sections A, B, C, D and E.
- 3. Section A comprises of 20 questions of 1 mark each. (18 MCQs + 2 Assertion-Reasoning)
- 4. Section B comprises of 5 questions of 2 marks each.
- 5. Section C comprises of 6 questions of 3 marks each.
- 6. Section **D** comprises of **4** questions of **5** marks each.
- 7. Section ${\bf E}$ comprises of ${\bf 3}$ Case Study Based Questions of ${\bf 4}$ marks each.
- 8. There is no overall choice in the question paper. However, an internal choice has been provided in 2 questions in Section B, 3 questions in Section C, 2 questions in Section D and 2 questions in Section E (in the sub-parts).
- 9. Use of calculators is **not** permitted.

SECTION A (20 Marks)

This section comprises 20 questions of 1 mark each. Questions 1-18 are Multiple Choice Questions (MCQs) and questions 19-20 are Assertion-Reason based questions.

Multiple Choice Questions (MCQs) and Assertion-Reason Questions (Combined Enumeration)

- 1. The relation R in the set $\{1,2,3\}$ given by $R = \{(1,1),(2,2),(3,3),(1,2),(2,3)\}$ is:
 - (a) Reflexive but not symmetric
 - (b) Symmetric but not transitive
 - (c) Transitive but not reflexive
 - (d) An equivalence relation
- 2. If $f(x) = x^2$ and g(x) = 2x + 1 are two functions, then the composite function $(g \circ f)(x)$ is:
 - (a) $(2x+1)^2$
 - (b) $2x^2 + 1$
 - (c) $4x^2 + 4x + 1$
 - (d) $x^2 + 2x + 1$
- 3. The value of $\cos(\sec^{-1} x + \csc^{-1} x)$, $|x| \ge 1$, is:
 - (a) 1
 - (b) 0
 - (c) -1
 - (d) $\pi/2$
- 4. If $\sin^{-1} x + \sin^{-1} y = \frac{2\pi}{3}$, then $\cos^{-1} x + \cos^{-1} y$ is equal to:
 - (a) $\frac{\pi}{3}$
 - (b) $\frac{\pi}{6}$
 - (c) $\frac{4\pi}{3}$
 - (d) $\frac{\pi}{2}$

- 5. If matrix A has order $3 \times n$ and matrix B has order $m \times 5$, and both AB and BA are defined, then the values of m and n are:
 - (a) m = 3, n = 5
 - (b) m = 5, n = 3
 - (c) m = 3, n = 3
 - (d) m = 5, n = 5
- 6. If $A = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$, then A^{10} is equal to:
 - (a) $2^{10}A$
 - (b) $2^9 A$
 - (c) $2^8 A$
 - (d) 10A
- 7. If A is a square matrix of order 3 such that A(adj A) = 10I, then |A| is:
 - (a) 1
 - (b) 10
 - (c) 100
 - (d) 1000
- 8. For what value of k is the area of the triangle with vertices (k,0),(4,0),(0,2) equal to 4 square units?
 - (a) 0
 - (b) 8
 - (c) 0 or 8
 - (d) -8
- 9. If $y = \log(\sqrt{\frac{1+x}{1-x}})$, then $\frac{dy}{dx}$ is:
 - (a) $\frac{1}{1-x^2}$
 - (b) $\frac{1}{x^2-1}$
 - (c) $\frac{1}{\sqrt{1-x^2}}$
 - (d) $\frac{x}{1-x^2}$
- 10. The maximum value of $\sin x + \cos x$ is:
 - (a) 1
 - (b) 2
 - (c) $\sqrt{2}$
 - (d) $\frac{1}{\sqrt{2}}$
- 11. $\int \frac{1}{\sqrt{x+a}+\sqrt{x+b}} dx$ is proportional to:
 - (a) $\frac{(x+a)^{3/2}-(x+b)^{3/2}}{a-b}$
 - (b) $\frac{(x+a)^{3/2}+(x+b)^{3/2}}{a-b}$
 - (c) $(x+a)^{3/2} (x+b)^{3/2}$
 - (d) $\frac{(x+a)^{3/2}}{a-b}$

- 12. The value of $\int_{-\pi/2}^{\pi/2} \sin^7 x \, dx$ is:
 - (a) 1
 - (b) -1
 - (c) 0
 - (d) $\pi/2$
- 13. The degree of the differential equation $\left(\frac{d^2y}{dx^2}\right)^3 + \left(\frac{dy}{dx}\right)^2 + \sin\left(\frac{dy}{dx}\right) + 1 = 0$ is:
 - (a) 3
 - (b) 2
 - (c) 1
 - (d) Not defined
- 14. The angle between the vector $\vec{a} = \hat{i} + \hat{j} + \hat{k}$ and the positive direction of the z-axis is:
 - (a) $\cos^{-1}\left(\frac{1}{\sqrt{3}}\right)$
 - (b) $\cos^{-1}\left(\frac{1}{3}\right)$
 - (c) $\pi/4$
 - (d) $\pi/3$
- 15. If $\vec{a}, \vec{b}, \vec{c}$ are three unit vectors such that $\vec{a} + \vec{b} + \vec{c} = \vec{0}$, then $\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}$ is:
 - (a) 3
 - (b) -3
 - (c) 3/2
 - (d) -3/2
- 16. The line $\frac{x-2}{3} = \frac{y-3}{4} = \frac{z-4}{5}$ is parallel to the plane:
 - (a) 2x + 3y + 4z = 0
 - (b) 3x + 4y + 5z = 0
 - (c) 3x + 4y 5z = 0
 - (d) 6x + 8y 10z = 0
- 17. The perpendicular distance from the origin to the plane x 2y + 2z = 9 is:
 - (a) 3
 - (b) 9
 - (c) 1
 - (d) $\sqrt{9}$
- 18. The maximum value of Z = 3x + 4y subject to $x + y \le 4, x \ge 0, y \ge 0$ is obtained at the point:
 - (a) (0,4)
 - (b) (4,0)
 - (c) (0,0)
 - (d) (1,3)

Assertion-Reasoning Based Questions

In questions 19 and 20, a statement of Assertion (A) is followed by a statement of Reason (R). Choose the correct answer from the following options:

- (a) Both A and R are true and R is the correct explanation of A.
- (b) Both A and R are true but R is not the correct explanation of A.
- (c) A is true but R is false.
- (d) A is false but R is true.
- 19. Assertion (A): If A and B are events such that P(A|B) = P(B|A), then P(A) = P(B). Reason (R): $P(A|B) = \frac{P(A \cap B)}{P(B)}$ and $P(B|A) = \frac{P(A \cap B)}{P(A)}$.
- 20. **Assertion (A):** $\frac{d}{dx}(\sin x^2) = 2x \cos x^2$. **Reason (R):** The differentiation is done using the Chain Rule, $\frac{d}{dx}f(g(x)) = f'(g(x)) \cdot g'(x)$.

SECTION B (10 Marks)

This section comprises 5 questions of 2 marks each.

- 21. Find $\frac{dy}{dx}$ if $y = \sin^{-1}\left(\frac{2^x}{1+4^x}\right)$.
- 22. Find the angle between the vectors $\vec{a} = \hat{i} + \hat{j} \hat{k}$ and $\vec{b} = \hat{i} \hat{j} + \hat{k}$.

OR

Find the projection of the vector $7\hat{i} + \hat{j} - 4\hat{k}$ on the vector $2\hat{i} + 6\hat{j} + 3\hat{k}$.

23. Evaluate $\int \frac{1}{\sqrt{1-4x^2}} dx$.

OR

Find the points on the curve $y = x^2 - 2x + 3$ where the tangent is parallel to the x-axis.

- 24. For a 2×2 matrix $A = [a_{ij}]$ whose elements are given by $a_{ij} = \frac{(i+j)^2}{2}$, construct the matrix A.
- 25. Given P(A) = 0.3, P(B) = 0.5 and $P(A \cap B) = 0.1$. Find the probability that neither A nor B occurs.

SECTION C (18 Marks)

This section comprises 6 questions of 3 marks each.

- 26. Show that $f: \mathbb{R} \{3\} \to \mathbb{R} \{1\}$ defined by $f(x) = \frac{x-2}{x-3}$ is a bijective function.
- 27. Evaluate $\int \frac{e^x}{x} (x \log x + 1) dx$.

OR

Evaluate $\int \frac{x-1}{\sqrt{x^2-1}} dx$.

28. Solve the differential equation $x \frac{dy}{dx} - y = \sqrt{x^2 + y^2}$.

OR

Find the intervals in which the function $f(x) = \sin x - \cos x$, $0 < x < 2\pi$ is strictly increasing.

29. Find the equation of the plane passing through the point (1, 1, -1) and perpendicular to the line joining the points A(4, 3, 2) and B(1, -1, 0).

OR

Find the vector equation of the line passing through the points (-2,0,3) and (3,5,-2).

- 30. If $A = \begin{bmatrix} 3 & -2 \\ 4 & -2 \end{bmatrix}$, find a value of k such that $A^2 = kA 2I$.
- 31. Solve the following Linear Programming Problem graphically: Minimize Z=3x+5y subject to $x+3y\geq 3, \ x+y\geq 2, \ x,y\geq 0.$

4

SECTION D (20 Marks)

This section comprises 4 questions of 5 marks each.

33. Using integration, find the area of the region bounded by the curves $y^2 = 9x$ and $x^2 = 9y$.

OR

Evaluate $\int_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx$.

- 34. Obtain the inverse of the matrix $A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{bmatrix}$ using elementary row operations.
- 35. Show that the height of the cylinder of maximum volume that can be inscribed in a sphere of radius R is $\frac{2R}{\sqrt{3}}$.

OR

Evaluate $\int \frac{\sin x \cos x}{\cos^2 x + 3 \cos x + 2} dx$.

36. Find the equation of the line passing through the point P(4,6,2) and the point of intersection of the line $\frac{x-1}{3} = \frac{y}{2} = \frac{z+1}{7}$ and the plane x + y - z = 8.

SECTION E (12 Marks)

This section comprises 3 case study based questions of 4 marks each.

37. Case Study 1: Velocity, Acceleration, and Distance

A particle moves such that its position in metres at time t seconds is given by $s(t) = t^3 - 6t^2 + 9t + 10$. The velocity v(t) and acceleration a(t) are given by $v(t) = \frac{ds}{dt}$ and $a(t) = \frac{dv}{dt}$.

Based on the given information, answer the following questions:

- (a) Find the velocity function v(t) of the particle. (1 Mark)
- (b) Find the time interval when the particle is moving in the positive direction (i.e., v(t) > 0). (3 Marks)

 \mathbf{OR}

- (c) Find the acceleration of the particle when its velocity is zero. (3 Marks)
- 38. Case Study 2: Distribution of Coloured Balls

A bag contains 4 red and 6 black balls. Three balls are drawn at random with replacement. Let X be the number of red balls drawn.

Based on the given information, answer the following questions:

- (a) Find the probability of drawing a red ball in a single draw. (1 Mark)
- (b) Determine the probability distribution of X. (3 Marks)

 \mathbf{OR}

- (c) Find the probability of drawing at most 2 red balls. (3 Marks)
- 39. Case Study 3: Angle Between Lines in a Structure

In a structural design, two straight support beams are modelled as lines L_1 and L_2 . Their equations are:

$$L_1: \frac{x-1}{1} = \frac{y-2}{2} = \frac{z-3}{3}$$

$$L_2: \frac{x}{-1} = \frac{y}{1} = \frac{z-1}{2}$$

5

Based on the given information, answer the following questions:

- (a) Write the direction ratios of the beam L_1 and L_2 . (1 Mark)
- (b) Find the vector representing the direction of the line L_2 . (3 Marks)

\mathbf{OR}

(c) Calculate the acute angle between the two beams L_1 and L_2 . (3 Marks)