PRACTICE QUESTION PAPER - XIII CLASS XII - MATHEMATICS (041)

Time Allowed: 3 Hours Maximum Marks: 80

General Instructions:

- $1.\ \,$ This Question Paper contains $\bf 38$ questions. All questions are compulsory.
- 2. The question paper is divided into FIVE Sections A, B, C, D and E.
- 3. Section A comprises of 20 questions of 1 mark each. (18 MCQs + 2 Assertion-Reasoning)
- 4. Section B comprises of 5 questions of 2 marks each.
- 5. Section C comprises of 6 questions of 3 marks each.
- 6. Section **D** comprises of **4** questions of **5** marks each.
- 7. Section ${\bf E}$ comprises of ${\bf 3}$ Case Study Based Questions of ${\bf 4}$ marks each.
- 8. There is no overall choice in the question paper. However, an internal choice has been provided in 2 questions in Section B, 3 questions in Section C, 2 questions in Section D and 2 questions in Section E (in the sub-parts).
- 9. Use of calculators is **not** permitted.

SECTION A (20 Marks)

This section comprises 20 questions of 1 mark each. Questions 1-18 are Multiple Choice Questions (MCQs) and questions 19-20 are Assertion-Reason based questions.

Multiple Choice Questions (MCQs) and Assertion-Reason Questions (Combined Enumeration)

- 1. Let $f: \mathbb{N} \to \mathbb{N}$ be defined by $f(x) = x^2 + x + 1$. The function f is:
 - (a) One-one and onto
 - (b) One-one but not onto
 - (c) Onto but not one-one
 - (d) Neither one-one nor onto
- 2. The number of bijective functions from a set A containing 5 elements to itself is:
 - (a) 5
 - (b) 25
 - (c) 120
 - (d) 3125
- 3. The value of $\tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{1}{3}\right)$ is:
 - (a) $\pi/4$
 - (b) $\pi/2$
 - (c) $\tan^{-1}(\frac{5}{6})$
 - (d) $\tan^{-1}\left(\frac{1}{6}\right)$
- 4. If $\tan^{-1} x + \tan^{-1} y = \frac{\pi}{4}$ and xy < 1, then x + y + xy is equal to:
 - (a) 0
 - (b) 1
 - (c) -1
 - (d) 2

- 5. If $A = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}$, then $A^2 4A$ is equal to:
 - (a) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
 - (b) $\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$
 - (c) $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$
 - (d) $\begin{bmatrix} 4 & 6 \\ 2 & 4 \end{bmatrix}$
- 6. If A is a square matrix, $A A^T$ is a:
 - (a) Symmetric matrix
 - (b) Skew-symmetric matrix
 - (c) Hermitian matrix
 - (d) Identity matrix
- 7. If A is a non-singular matrix of order 3, and |adj(A)| = 49, then |A| is:
 - (a) 7
 - (b) ± 7
 - (c) 49
 - (d) 1/7
- 8. If $A = \begin{bmatrix} 1 & 2 \\ 4 & 2 \end{bmatrix}$, then the value of |2A| is:
 - (a) 2|A|
 - (b) 4|A|
 - (c) 8|A|
 - (d) |A|
- 9. The derivative of log(7x) with respect to x is:
 - (a) 7/x
 - (b) 1/(7x)
 - (c) 1/x
 - (d) 7
- 10. A particle moves along the curve $y = \frac{2}{3}x^3 + 1$. The points on the curve where the y-coordinate is changing twice as fast as the x-coordinate are:
 - (a) (1, 5/3)
 - (b) $(\pm 1, 5/3)$
 - (c) (0,1)
 - (d) (1,5/3) and (-1,1/3)
- 11. $\int \frac{\sin x}{\sin(x-a)} dx$ is equal to:
 - (a) $\sin a \log |\sin(x-a)| + x \cos a + C$
 - (b) $x \cos a \sin a \log |\sin(x-a)| + C$
 - (c) $x \cos a + \sin a \log |\sin(x-a)| + C$

- (d) $x \sin a + \cos a \log |\sin(x a)| + C$ 12. $\int_{-1}^{1} \frac{dx}{x^2 + 1}$ is equal to: (a) $\pi/2$ (b) $\pi/4$ (c) π
- 13. The integrating factor of the differential equation $x \frac{dy}{dx} y = \log x$ is:
 - (a) 1/x
 - (b) x

(d) 0

- (c) e^x
- (d) e^{-x}
- 14. The scalar projection of $\vec{a} = 2\hat{i} + 3\hat{j} + 2\hat{k}$ on the vector $\hat{i} + 2\hat{j} + \hat{k}$ is:
 - (a) $10/\sqrt{6}$
 - (b) 10/6
 - (c) $\sqrt{6}/10$
 - (d) 6/10
- 15. If $|\vec{a}| = 1$, then $|\vec{a} \times \hat{i}|^2 + |\vec{a} \times \hat{j}|^2 + |\vec{a} \times \hat{k}|^2$ is equal to:
 - (a) 0
 - (b) 1
 - (c) 2
 - (d) 3
- 16. The direction cosines of the y-axis are:
 - (a) (0,1,0)
 - (b) (1,0,0)
 - (c) (0,0,1)
 - (d) (1,1,1)
- 17. The angle between the planes 2x y + z = 6 and x + y + 2z = 7 is:
 - (a) 0
 - (b) $\pi/6$
 - (c) $\pi/3$
 - (d) $\pi/2$
- 18. The region represented by the constraints $x \ge 0, y \ge 0, 2x + 3y \le 6$ and $x + 4y \le 4$ is:
 - (a) Bounded
 - (b) Unbounded
 - (c) Feasible
 - (d) Infeasible

Assertion-Reasoning Based Questions

In questions 19 and 20, a statement of Assertion (A) is followed by a statement of Reason (R). Choose the correct answer from the following options:

- (a) Both A and R are true and R is the correct explanation of A.
- (b) Both A and R are true but R is not the correct explanation of A.
- (c) A is true but R is false.
- (d) A is false but R is true.
- 19. **Assertion (A):** If A and B are independent events, then $P(A \cap B|A \cup B) = \frac{P(A)P(B)}{1-P(A')P(B')}$. **Reason (R):** For independent events A and B, $P(A \cap B) = P(A)P(B)$.
- 20. Assertion (A): The maximum value of $\frac{\log x}{x}$ is $\frac{1}{e}$. Reason (R): $\frac{d}{dx} \left(\frac{\log x}{x} \right)$ is zero at x = e.

SECTION B (10 Marks)

This section comprises 5 questions of 2 marks each.

- 21. Find $\frac{dy}{dx}$ if $y = \tan^{-1}\left(\frac{3x-x^3}{1-3x^2}\right)$, $-\frac{1}{\sqrt{3}} < x < \frac{1}{\sqrt{3}}$.
- 22. If the volume of the parallelepiped whose coterminous edges are $2\hat{i}-3\hat{j}+4\hat{k}$, $\hat{i}+2\hat{j}-\hat{k}$ and $3\hat{i}-\hat{j}+\lambda\hat{k}$ is 5 cubic units, find the value of λ .

OR

Find the direction cosines of the line passing through the points (-2, 4, -5) and (1, 2, 3).

23. Evaluate $\int \frac{1}{\sqrt{4x-x^2}} dx$.

 \mathbf{OR}

Find the approximate change in the volume of a cube of side x meters caused by increasing the side by 1%.

- 24. If $\begin{vmatrix} 3x & 7 \\ -2 & 4 \end{vmatrix} = \begin{vmatrix} 8 & 6 \\ -2 & 4 \end{vmatrix}$, write the value of x.
- 25. If A and B are two events such that P(A) = 0.5, P(B) = 0.6 and $P(A \cap B) = 0.3$. Find $P(A' \cap B')$.

SECTION C (18 Marks)

This section comprises 6 questions of 3 marks each.

- 26. Show that $\tan^{-1}\left(\frac{x}{y}\right) \tan^{-1}\left(\frac{x-y}{x+y}\right) = \frac{\pi}{4}$.
- 27. Evaluate $\int \frac{\sin \sqrt{x}}{\sqrt{x}} dx$.

 \mathbf{OR}

Evaluate $\int \frac{x^2}{x^4 + x^2 + 1} dx$.

28. Find the general solution of the differential equation $\cos x \frac{dy}{dx} + y \sin x = 1$.

OR

Find the equation of the tangent and normal to the curve $y = x^4 - 6x^3 + 13x^2 - 10x + 5$ at the point (0,5).

29. Find the vector equation of the line passing through the point (1,2,-4) and perpendicular to the two lines $\frac{x-8}{3} = \frac{y+19}{-16} = \frac{z-10}{7}$ and $\frac{x-15}{3} = \frac{y-29}{8} = \frac{z-5}{-5}$.

OF

Find the foot of the perpendicular from the point (1,2,3) to the line $\frac{x-6}{3} = \frac{y-7}{2} = \frac{z-7}{-2}$.

4

- 30. Using properties of determinants, prove that $\begin{vmatrix} 1 & x & y \\ 1 & x+y & y \\ 1 & x & y+x \end{vmatrix} = x^2y.$
- 31. Maximize Z = 5x + 7y subject to $2x + y \le 8, x + 2y \le 10, x \ge 0, y \ge 0$.

SECTION D (20 Marks)

This section comprises 4 questions of 5 marks each.

33. Using integration, find the area of the region bounded by the circle $x^2 + y^2 = a^2$.

OR

Evaluate $\int \frac{1}{x^4+1} dx$.

- 34. Given $A=\begin{bmatrix}1&-1&1\\2&1&-3\\1&1&1\end{bmatrix}$, find A^{-1} . Hence, solve the system of equations x-y+z=4, 2x+y-3z=0, x+y+z=2.
- 35. Find the maximum volume of the cylinder inscribed in a sphere of radius R.

OR.

Evaluate $\int \frac{\sin x}{\sin 4x} dx$.

36. Find the shortest distance between the lines:

$$\vec{r} = (\hat{i} + 2\hat{j} + 3\hat{k}) + \lambda(2\hat{i} + 3\hat{j} + 4\hat{k})$$

$$\vec{r} = (2\hat{i} + 4\hat{j} + 5\hat{k}) + \mu(3\hat{i} + 4\hat{j} + 5\hat{k})$$

SECTION E (12 Marks)

This section comprises 3 case study based questions of 4 marks each.

37. Case Study 1: Rate of Change in Geometry

A man of height 2 m walks at a uniform speed of 5 km/h away from a lamppost which is 6 m high. Let x be the distance of the man from the lamppost and L be the length of his shadow.

Based on the given information, answer the following questions:

- (a) By using similar triangles, write the relation between x and L. (1 Mark)
- (b) Find the rate at which the length of his shadow is increasing. (3 Marks)

OR

- (c) Find the rate at which the tip of the shadow is moving. (3 Marks)
- 38. Case Study 2: Bayes' Theorem in Medical Testing

A person is known to have suffered from a certain disease. The probability that a patient, chosen at random from the population, has the disease is 0.1%. The diagnostic test for this disease is 99% accurate (i.e., if a person has the disease, the test is positive 99% of the time, and if a person does not have the disease, the test is negative 99% of the time).

Based on the given information, answer the following questions:

- (a) What is the probability that a person is healthy (H) and the test result is positive (P)? (1 Mark)
- (b) Find the probability that a randomly chosen person gets a positive test result. (3 Marks)

OR

(c) If a person gets a positive test result, find the probability that they actually have the disease (D). (3 Marks)

39. Case Study 3: Diet Problem Formulation

A dietician wishes to mix two types of food, X and Y, in such a way that the vitamin contents of the mixture contain at least 8 units of vitamin A and 10 units of vitamin B. Food X costs Rs 2 per unit and Food Y costs Rs 3 per unit. Food X contains 2 units of vitamin A and 1 unit of vitamin B per unit. Food Y contains 1 unit of vitamin A and 2 units of vitamin B per unit. The dietician wants to minimize the cost of the mixture.

Based on the given information, answer the following questions:

- (a) Define the objective function Z to be minimized. (1 Mark)
- (b) Write the constraint inequalities based on the minimum vitamin requirements. (3 Marks)

 \mathbf{OR}

(c) State the non-negativity constraints for the variables. (3 Marks)