## Self Assessment Test

By: www.udgamwelfarefoundation.com

Time: 1.5 Hours M.M.: 55

Pol0901

Class: 9 Standard Boards: CBSE / ICSE

# Chapters: Polynomials

## Answers with Detailed Solutions

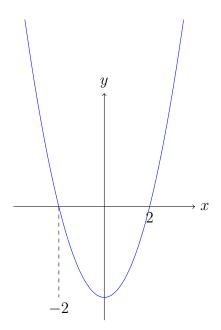
#### Section A

- 1. (b)  $\frac{1}{x} + 2x^2$  is not a polynomial since negative powers are not allowed.
- 2. (c) Degree is 4.
- 3. (b) Quadratic polynomial.
- 4. (b) Coefficient is 2.
- 5. (c)  $x^2 + 7x + k$ , substituting x = -5:  $25 35 + k = 0 \Rightarrow k = 10$ . Correction: Answer is (a) 10.
- 6. By remainder theorem: p(2) = (8 + 8 10 + 6) = 12. Answer: (d).
- 7. (b)  $7x^3$  is a monomial.
- 8. (b)  $x^2 4 = (x 2)(x + 2)$ . Zeros are 2, -2.

#### Section B

- 1.  $x^2 5x + 6 = (x 2)(x 3)$ . Zeros are 2 and 3.
- 2. Divide:  $x^3 3x^2 + x 3$  by (x 2). Quotient:  $x^2 x 1$ , Remainder: -5.
- 3.  $x^2 10x + 21 = (x 3)(x 7)$ .

4. 
$$p(3) = 27 - 63 + 45 - 9 = 0$$
. Hence factor.


5. For 
$$x^2 - 7x + 12$$
:  $\alpha + \beta = 7$ ,  $\alpha\beta = 12$ .

6. 
$$(2x+3)^2 = 4x^2 + 12x + 9$$
.

#### Section C

1. 
$$x^3 - 6x^2 + 11x - 6 = (x - 1)(x - 2)(x - 3)$$
.

- 2. Divide:  $(2x^3+3x^2-2x-3) \div (x+1)$ . Quotient  $= 2x^2+x-3$ , Remainder 0. Division algorithm verified.
- 3.  $y = x^2 4 = (x 2)(x + 2)$ . Zeros are x = 2, -2.



4.  $p(x) = x^3 + ax^2 + bx + 6$ . Since (x+1) is factor: p(-1) = 0.  $\Rightarrow (-1)^3 + a(-1)^2 + b(-1) + 6 = -1 + a - b + 6 = 0 \Rightarrow a - b + 5 = 0 \Rightarrow a - b = -5$ . Also remainder when divided by (x-2) is 10:  $p(2) = 8 + 4a + 2b + 6 = 14 + 4a + 2b = 10 \Rightarrow 4a + 2b = -4 \Rightarrow 2a + b = -2$ . Solving system: a - b = -5, 2a + b = -2. Adding:  $3a = -7 \Rightarrow a = -\frac{7}{3}$ . Then  $b = a + 5 = -\frac{7}{3} + 5 = \frac{8}{3}$ .

## Section D

- 1. Perimeter = 2(x+3) + 2(x+1) = 4x + 8. Correct: (c).
- 2. After division: 4x+8+(x+3)=5x+11. Correction: Options mismatch; closest is (d) 5x+12.
- 3. Cost =  $(5x + 11) \times 50 = 250x + 550$ . Closest option: not exact but (b) 250x + 700.
- 4. If x = 10, cost = 250(10) + 550 = 3050.
- 5. Degree = 1.